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Abstract. In this paper we prove the L∞-boundedness of solutions of the

quasilinear elliptic equation

Au = f(x, u,∇u) in Ω,

∂u

∂ν
= g(x, u) on ∂Ω,

where A is a second order quasilinear differential operator and f : Ω×R×RN →
R as well as g : ∂Ω × R → R are Carathéodory functions satisfying natural

growth conditions. Our main result is given in Theorem 4.1 and is based on the

Moser iteration technique along with real interpolation theory. Furthermore,
the solutions of the elliptic equation above belong to C1,α(Ω), if g is Hölder

continuous.

1. Introduction

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary ∂Ω. We consider
the quasilinear elliptic equation

Au = f(x, u,∇u) in Ω,

∂u

∂ν
= g(x, u) on ∂Ω,

(1.1)

where ∂u
∂ν denotes the conormal derivative of u. Here, A is a second-order quasilinear

differential operator in divergence form of Leray-Lions type given by

Au(x) = −
N∑
i=1

∂

∂xi
ai(x, u(x),∇u(x)),

and f : Ω×R×RN → R as well as g : ∂Ω×R→ R are some Carathéodory functions.
For u ∈ W 1,p(Ω) defined on the boundary ∂Ω, we make use of the trace operator
γ : W 1,p(Ω)→ Lp(∂Ω) which is well known to be compact. For easy readability we
will drop the notation γu and write for short u, respectively, g(x, u) := g(x, γu).
The main goal of this paper is to prove a priori estimates for solutions of the
nonlinear elliptic equation in (1.1). For this purpose, we use some important tools
like the Moser iteration technique and real interpolation theory. By an a priori
estimate, we mean an estimate of the form

‖u‖L∞(Ω) ≤ C,
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for all possible solutions of (1.1) with some constant C independent of u.
Concerning a priori bounds for elliptic equations with zero Neumann conditions we
refer to the results in [17] and [19], where they consider problems of the form

−∆u+ λu = f(u), u > 0 in Ω,

∂u

∂ν
= 0 on ∂Ω,

in a bounded convex domain Ω ⊂ R3 with smooth boundary and λ > 0. Motreanu
et al. have applied the Moser iteration, too, in [11, Proof of Proposition 2.5] to
prove L∞-boundedness for solutions of the Neumann problem

−div ϑε(z,∇vε) = f0(z, vε) + λεf0(z, x0)− λε|vε − x0|p−2(vε − x0) in Z,

∂u

∂ν
= 0 on ∂Z,

where

ϑε(z, ξ) = |ξ|p−2ξ + λε|∇x0|p−2∇x0 + λε|ξ −∇x0|p−2(ξ −∇x0),

with Z ⊂ RN is a bounded domain with a C2-boundary ∂Z, 0 < λε ≤ 1, ε ∈ (0, 1],
x0 ∈ L∞(Ω) fixed and with a Carathéodory function f0 : Z × R → R satisfying
some growth condition.
The novelty of our paper is the demonstration of a priori estimates for nonlinear
elliptic equations with nonlinear nonhomogenous Neumann boundary values of the
form (1.1), where the Carathéodory functions f and g depend on u,∇u and u,
respectively, satisfying a natural growth condition. Additionally, we extend our
results and show that every solution of (1.1) belongs to C1,α(Ω) in case g satisfies
the condition

|g(x1, s1)− g(x2, s2)| ≤ L
[
|x1 − x2|α + |s1 − s2|α

]
,

for all pairs (x1, s1), (x2, s2) in ∂Ω × [−M0,M0], where M0 is a positive constant
and α ∈ (0, 1]. The C1-regularity follows directly from the L∞-boundedness along
with the results of Liebermann in [10].

2. Notations and Hypotheses

Let 1
p + 1

q = 1. We suppose the following conditions on the operator A and the

nonlinearities f : Ω× R× RN → R and g : ∂Ω× R→ R.

(A1) Each ai(x, s, ξ) satisfies Carathéodory conditions, i.e., is measurable in
x ∈ Ω for all (s, ξ) ∈ R × RN and continuous in (s, ξ) for a.e. x ∈ Ω.
Furthermore, a constant c0 > 0 and a function k0 ∈ Lq(Ω) exist so that

|ai(x, s, ξ)| ≤ k0(x) + c0(|s|p−1 + |ξ|p−1),

for a.e. x ∈ Ω and for all (s, ξ) ∈ R× RN , where |ξ| denotes the Euclidian
norm of the vector ξ.

(A2) The coefficients ai satisfy a monotonicity condition with respect to ξ in the
form

N∑
i=1

(ai(x, s, ξ)− ai(x, s, ξ′))(ξi − ξ′i) > 0,

for a.e. x ∈ Ω, for all s ∈ R, and for all ξ, ξ′ ∈ RN with ξ 6= ξ′.
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(A3) A constant c1 > 0 and a function k1 ∈ L∞(Ω) exist such that

N∑
i=1

ai(x, s, ξ)ξi ≥ c1|ξ|p − k1(x),

for a.e. x ∈ Ω, for all s ∈ R, and for all ξ ∈ RN .
(F1) x 7→ f(x, s, ξ) is measurable in Ω for all (s, ξ) ∈ R× RN .
(F2) (s, ξ) 7→ f(x, s, ξ) is continuous in R× RN for almost all x ∈ Ω.
(F3) There exists a constant c2 > 0 such that

|f(x, s, ξ)| ≤ c2(1 + |s|p−1 + |ξ|p−1), (2.1)

for a.e. x ∈ Ω, for all s ∈ R and for all ξ ∈ RN .
(G1) x 7→ g(x, s) is measurable in ∂Ω for all s ∈ R.
(G2) s 7→ g(x, s) is continuous in R for almost all x ∈ ∂Ω.
(G3) There exists a constant c3 > 0 such that

|g(x, s)| ≤ c3(1 + |s|p−1), (2.2)

for a.e. x ∈ ∂Ω and for all s ∈ R.

Condition (A1) implies that A : W 1,p(Ω)→ (W 1,p(Ω))∗ is bounded continuous and
along with (A2) it holds that A is pseudomonotone. Due to (A1) the operator A
generates a mapping from W 1,p(Ω) into its dual space defined by

〈Au,ϕ〉 =

∫
Ω

N∑
i=1

ai(x, u,∇u)
∂ϕ

∂xi
dx,

where 〈·, ·〉 stands for the duality pairing between W 1,p(Ω) and (W 1,p(Ω))∗. As-
sumption (A3) is a coercivity type condition. The conditions (F3) and (G3)
ensure that the corresponding Nemytskij operators F : W 1,p(Ω) → Lq(Ω) and
G : Lp(∂Ω)→ Lq(∂Ω) defined by

Fu(x) = f(x, u(x),∇u(x)), Gu(x) = g(x, u(x)),

are bounded and continuous (see e.g. [18]). The definition of a solution of problem
(1.1) in the weak sense is defined as follows.

Definition 2.1. A function u ∈ W 1,p(Ω) is said to be a weak solution of (1.1) if
the following holds∫

Ω

N∑
i=1

ai(x, u,∇u)
∂ϕ

∂xi
dx =

∫
Ω

f(x, u,∇u)ϕdx+

∫
∂Ω

g(x, u)ϕdσ, ∀ϕ ∈W 1,p(Ω).

Remark 2.2. The growth conditions on the function f and g can be relaxed, re-
placing |s|p−1 by |s|q for a suitable q > p−1. Thanks to the Sobolev embedding and
to the trace embedding, the definition of a weak solution to the Neumann problem
would also be consistent in this case. For reasons of simplification, we deal with the
given growth conditions as in (2.1) and (2.2).
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3. The spaces Bspq and F spq

In this section, we give a brief overview about Besov spaces (respectively, Lizorkin-
Triebel spaces) which are needed in the proof of our main theorem.
If A is a Banach space, then

lσp (A) =

ξ : ξ = {ξj}∞j=0; ξj ∈ A; ‖ξ‖lσp =

 ∞∑
j=0

2jσp‖ξj‖pA

 1
p

<∞


for 1 ≤ p <∞ and

lσ∞(A) =

{
ξ : ξ = {ξj}∞j=0; ξj ∈ A; ‖ξ‖lσ∞ = sup

j
2jσ‖ξj‖A <∞

}
for p =∞ are also Banach spaces (cf. [14, Section 1.18]) where σ is a real number.
We recall that S = S(RN ) is the set of all complex-valued rapidly decreasing
infinitely differentiable functions defined on the N -dimensional real Euclidean space
RN . The spaces S(RN ) and S′(RN ) (dual space) have their usual topologies, where
S′(RN ) is equipped with the strong topology. We denote by F the Fourier transform
in S and the support of a distribution f is written as supp f . Further, we set

Mj = {ξ : ξ ∈ RN , 2j−1 ≤ |ξ| ≤ 2j+1}, j = 1, 2, . . . ,

M0 = {ξ : ξ ∈ RN , |ξ| ≤ 2}.

Then we introduce the spaces Bspq(RN ) and F spq(RN ) as follows (see [14, Definition
2.3.1/1]).
Definition 3.1.

(a) For −∞ < s <∞, 1 < p <∞, and 1 ≤ q <∞ one sets

Bspq(RN ) =

f : f ∈ S′(RN ); f =

∞∑
j=0

aj(x); suppFaj ⊂Mj ;

‖{aj}‖lsq(Lp) =

 ∞∑
j=0

(2sj‖aj(x)‖Lp)q

 1
q

<∞


and for −∞ < s <∞, 1 < p <∞, and q =∞ one sets

Bsp∞(RN ) =

f : f ∈ S′(RN ); f =

∞∑
j=0

aj(x); suppFaj ⊂Mj ;

‖{aj}‖ls∞(Lp) = sup
j

2sj‖aj(x)‖Lp <∞
}
.

Further, for −∞ < s <∞, 1 < p <∞ and 1 ≤ q ≤ ∞ let

‖f‖Bspq(RN ) = inf
f=

∑
aj
‖{aj}‖lsq(Lp).
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(b) For −∞ < s <∞, 1 < p <∞, and 1 < q <∞ one sets

F spq(RN ) =

f : f ∈ S′(RN ); f =

∞∑
j=0

aj(x); suppFaj ⊂Mj ;

‖{aj}‖Lp(lsq)
=

∫
Ω

 ∞∑
j=0

2sjq|aj(x)|q


p
q

dx


1
p

<∞

 .

Further, let

‖f‖F spq(RN ) = inf
f=

∑
aj
‖{aj}‖Lp(lsq)

.

(c) For −∞ < s <∞ and 1 < p <∞ one sets

Hs
p(RN ) = F sp2(RN ).

(d) For 1 < p <∞ one sets

W s
p (RN ) =

{
Hs
p(RN ) if s = 0, 1, 2, . . . ,

Bspp(RN ) if 0 < s 6= integer.

The proof of the following theorem can be found in [14, Theorem 2.3.2].
Theorem 3.2.

(1) Let −∞ < s <∞, 1 < p <∞, and 1 ≤ q ≤ ∞. Then Bspq(RN ) is a Banach
space.

(2) Let −∞ < s <∞, 1 < p <∞, and 1 < q <∞. Then F spq(RN ) is a Banach
space.

It is clear, that all notations above hold true if we replace RN by a bounded
domain Ω ⊂ RN . The spaces Bspq and F spq are called Besov and Lizorkin-Triebel
spaces, respectively, which are equal in case p = q with 1 < p <∞ and −∞ < s <
∞. We see that the spaces W s

p with s = 1, 2, 3, . . . coincide with the well-known
Sobolev spaces introduced by S.L. Sobolev and the extension of the definition of the
spaces W s

p to values 0 < s 6= integer are the so-called Slobodeckij spaces. Finally, it
was shown that Hs

p with s > 0 coincide with the well-known Lebesgue (or Liouville,
or Bessel-potential) spaces. For more details we refer for example to the books of
H. Triebel in [14, 15, 16] or to the monograph of Runst and Sickel in [12].
In our considerations, we need the following continuous embeddings

T1 : Bspp(Ω)→ B
s− 1

p
pp (∂Ω), with s >

1

p
,

T2 : B
s− 1

p
pp (∂Ω) = F

s− 1
p

pp (∂Ω)→ F 0
p2(∂Ω) = Lp(∂Ω), with s >

1

p
,

where Ω is a bounded C∞-domain (see [12, Page 75 and Page 82], [14, 2.3.1 and
2.3.2] and [15, 3.3.1]). Let s = m + ι with m ∈ N0 and 0 ≤ ι < 1. Then the
embeddings are also valid if ∂Ω ∈ Cm,1 ([13]). In [3, Satz 9.40] the proof is given for
p = 2, however, it can be extended to p ∈ (1,∞) by using the Fourier transformation
in Lp(Ω) ([4]).
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We set s = 1
p + ε̃, where ε̃ > 0 is arbitrarily fixed such that s = 1

p + ε̃ < 1. Thus,

the embeddings are valid for a Lipschitz boundary ∂Ω. This yields

T3 : B
1
p+ε̃
pp (Ω)→ Lp(∂Ω),

which means

‖v‖Lp(∂Ω) ≤ c4‖v‖
B

1
p
+ε̃

pp (Ω)
, ∀v ∈ B

1
p+ε̃
pp (Ω), (3.1)

where c4 is a positive constant. The real interpolation theory implies

(
F 0
p2(Ω), F 1

p2(Ω)
)

1
p+ε̃,p

=
(
Lp(Ω),W 1,p(Ω)

)
1
p+ε̃,p

= B
1
p+ε̃
pp (Ω),

(see [1], [14], [15], [16, Section 1.6.2 and 1.6.7]) which ensures the norm estimate

‖v‖
B

1
p
+ε̃

pp (Ω)
≤ c5‖v‖

1
p+ε̃

W 1,p(Ω)‖v‖
1− 1

p−ε̃
Lp(Ω) , ∀v ∈W 1,p(Ω), (3.2)

(cf. [14, Theorem 1.3.3 (g)]) with a positive constant c5 only depending on the
boundary ∂Ω.

4. Main Results

Theorem 4.1. Let the conditions (A1)–(A3),(F1)–(F3) and (G1)–(G3) be satis-
fied. Let u ∈W 1,p(Ω) be a solution of (1.1). Then u ∈ L∞(Ω).

Proof. To prove the L∞-regularity of u, we will use the Moser iteration technique
(see e.g. [5], [6], [7], [8], [9]). It suffices to consider the proof in case 1 ≤ p ≤ N ,
otherwise we would be done. First we are going to show that u+ = max{u, 0}
belongs to L∞(Ω). ForM > 0 we define vM (x) = min{u+(x),M}. LettingK(t) = t
if t ≤ M and K(t) = M if t > M , it follows by [9, Theorem B.3] that K ◦ u+ =
vM ∈ W 1,p(Ω) and hence vM ∈ W 1,p(Ω) ∩ L∞(Ω). For real k ≥ 0 we choose

ϕ = vkp+1
M , then ∇ϕ = (kp + 1)vkpM∇vM and ϕ ∈ W 1,p(Ω) ∩ L∞(Ω). Notice that

u(x) ≤ 0 implies directly vM (x) = 0. Testing the weak formulation in Definition

2.1 with ϕ = vkp+1
M , one gets

(kp+ 1)

∫
Ω

N∑
i=1

ai(x, u
+,∇u+)vkpM

∂vM
∂xi

dx

=

∫
Ω

f(x, u+,∇u+)vkp+1
M dx+

∫
∂Ω

g(x, u+)vkp+1
M dσ.

(4.1)
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Applying condition (A3) and the Hölder inequality, the left-hand side of (4.1) can
be estimated to obtain

(kp+ 1)

∫
Ω

N∑
i=1

ai(x, u
+,∇u+)vkpM

∂vM
∂xi

dx

= (kp+ 1)

∫
Ω

N∑
i=1

ai(x, vM ,∇vM )
∂vM
∂xi

vkpM dx

≥ (kp+ 1)

∫
Ω

(c1|∇vM |p − k1)vkpM dx

≥ c1
kp+ 1

(k + 1)p

∫
Ω

|∇vk+1
M |pdx− e1(kp+ 1)

∫
Ω

(u+)kpdx

≥ c1
kp+ 1

(k + 1)p

∫
Ω

|∇vk+1
M |pdx− e1(kp+ 1)|Ω|

1
k+1

(∫
Ω

(u+)(k+1)pdx

) kp
(k+1)p

,

(4.2)

where e1 = ‖k1‖∞. The assumption (F3) along with the Hölder inequality and
Young’s inequality implies

∫
Ω

f(x, u+,∇u+)vkp+1
M dx

≤ c2
∫

Ω

(1 + |u+|p−1 + |∇u+|p−1)vkp+1
M dx

≤ c2|Ω|
p−1

(k+1)p

(∫
Ω

(u+)(k+1)pdx

) kp+1
(k+1)p

+ c2

∫
Ω

(u+)(k+1)pdx

+ c2

∫
Ω

δ|∇u+|(p−1)qv
k(p−1)q
M dx+ c2

∫
Ω

C(δ)v
(k+1)p
M dx

≤ e2

(∫
Ω

(u+)(k+1)pdx

) kp+1
(k+1)p

+ (1 + C(δ))c2

∫
Ω

(u+)(k+1)pdx

+
c2δ

(k + 1)p

∫
Ω

|∇(u+)k+1|pdx.

(4.3)

The same arguments for the boundary integral provide

∫
∂Ω

g(x, u+)vkp+1
M dσ ≤ c3

∫
∂Ω

(1 + |u+|p−1)vkp+1
M dσ

≤ e3

(∫
∂Ω

(u+)(k+1)pdσ

) kp+1
(k+1)p

+ e4

∫
∂Ω

(u+)(k+1)pdσ.

(4.4)
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Applying the estimates (4.2)–(4.4) to (4.1) one gets

kp+ 1

(k + 1)p

∫
Ω

|∇vk+1
M |pdx

≤ e2

(∫
Ω

(u+)(k+1)pdx

) kp+1
(k+1)p

+ (1 + C(δ))c2

∫
Ω

(u+)(k+1)pdx

+
c2δ

(k + 1)p

∫
Ω

|∇(u+)k+1|pdx+ e3

(∫
∂Ω

(u+)(k+1)pdσ

) kp+1
(k+1)p

+ e4

∫
∂Ω

(u+)(k+1)pdσ + e5(kp+ 1)

(∫
Ω

(u+)(k+1)pdx

) kp
(k+1)p

.

We have limM→∞ vM (x) = u+(x) for a.a. x ∈ Ω and can apply Fatou’s Lemma
which results in

kp+ 1

(k + 1)p

∫
Ω

|∇(u+)k+1|pdx

≤ e2

(∫
Ω

(u+)(k+1)pdx

) kp+1
(k+1)p

+ (1 + C(δ))c2

∫
Ω

(u+)(k+1)pdx

+
c2δ

(k + 1)p

∫
Ω

|∇(u+)k+1|pdx+ e3

(∫
∂Ω

(u+)(k+1)pdσ

) kp+1
(k+1)p

+ e4

∫
∂Ω

(u+)(k+1)pdσ + e5(kp+ 1)

(∫
Ω

(u+)(k+1)pdx

) kp
(k+1)p

.

(4.5)

We have either(∫
Ω

(u+)(k+1)pdx

) kp+1
(k+1)p

≤ 1 or

(∫
Ω

(u+)(k+1)pdx

) kp+1
(k+1)p

≤
∫

Ω

(u+)(k+1)pdx,

respectively, either(∫
∂Ω

(u+)(k+1)pdσ

) kp+1
(k+1)p

≤ 1 or

(∫
∂Ω

(u+)(k+1)pdσ

) kp+1
(k+1)p

≤
∫
∂Ω

(u+)(k+1)pdσ,

and finally, either(∫
Ω

(u+)(k+1)pdx

) kp
(k+1)p

≤ 1 or

(∫
Ω

(u+)(k+1)pdx

) kp
(k+1)p

≤
∫

Ω

(u+)(k+1)pdx.

Using the calculation above to (4.5), we obtain[
kp+ 1

(k + 1)p
− c2δ

(k + 1)p

] ∫
Ω

|∇(u+)k+1|pdx

≤ (C(δ)c2 + e6(kp+ 1))

∫
Ω

(u+)(k+1)pdx+ e7

∫
∂Ω

(u+)(k+1)pdσ + e8,

where the choice δ = kp+1
2c2

results in

kp+ 1

2(k + 1)p

∫
Ω

|∇(u+)k+1|pdx

≤ e9(kp+ 1)

∫
Ω

(u+)(k+1)pdx+ e7

∫
∂Ω

(u+)(k+1)pdσ + e8.

(4.6)
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It should be pointed out that

C(δ) = (δp)−
q
p · 1

q
=

(
2c2
p

) q
p

·
(

1

kp+ 1

) q
p

· 1

q
≤ e10

with a positive constant e10 where we have set e9 = e10c2 + e6. Adding on both
sides of (4.6) the positive integral kp+1

2(k+1)p

∫
Ω

(u+)(k+1)pdx yields

kp+ 1

2(k + 1)p

[∫
Ω

|∇(u+)k+1|pdx+

∫
Ω

(u+)(k+1)pdx

]
≤ e11(kp+ 1)

∫
Ω

(u+)(k+1)pdx+ e7

∫
∂Ω

(u+)(k+1)pdσ + e8,

(4.7)

due to the fact that kp+1
2(k+1)p < kp + 1 for all k ≥ 0. Next we want to estimate the

boundary integral by an integral in the domain Ω. Using (3.1), (3.2) and Young’s
inequality yields∫

∂Ω

((u+)k+1)pdσ

= ‖(u+)k+1‖pLp(∂Ω)

≤ cp4‖(u+)k+1‖p
B

1
p
+ε̃

pp (Ω)

≤ cp4c
p
5‖(u+)k+1‖(

1
p+ε̃)p
W 1,p(Ω)‖(u

+)k+1‖(1− 1
p−ε̃)p

Lp(Ω)

≤ cp4c
p
5

(
δ′‖(u+)k+1‖(1+ε̃p)q̃

W 1,p(Ω) + C(δ′)‖(u+)k+1‖(p−1−ε̃p)q̃′
Lp(Ω)

)
= cp4c

p
5

(
δ′‖(u+)k+1‖pW 1,p(Ω) + C(δ′)‖(u+)k+1‖pLp(Ω)

)
,

(4.8)

where q̃ = p
1+ε̃p and q̃′ = p

p−1−ε̃p satisfy 1
q̃ + 1

q̃′ = 1 and δ′ is a free parameter

specified later. Note that the positive constant C(δ′) depends on δ′. Applying (4.8)
to (4.7) shows

kp+ 1

2(k + 1)p

[∫
Ω

|∇(u+)k+1|pdx+

∫
Ω

(u+)(k+1)pdx

]
≤ e11(kp+ 1)

∫
Ω

(u+)(k+1)pdx+ e7

∫
∂Ω

(u+)(k+1)pdσ + e8

≤ e11(kp+ 1)

∫
Ω

(u+)(k+1)pdx+ e12δ
′‖(u+)k+1‖pW 1,p(Ω)

+ e12C(δ′)‖(u+)k+1‖pLp(Ω) + e8,

where e12 = e7c
p
4c
p
5 is a positive constant. We take δ′ = kp+1

e124(k+1)p to get(
kp+ 1

2(k + 1)p
− e12

kp+ 1

e124(k + 1)p

)[∫
Ω

|∇(u+)k+1|pdx+

∫
Ω

|(u+)k+1|pdx
]

≤ e11(kp+ 1)

∫
Ω

(u+)(k+1)pdx+ e12C(δ′)‖(u+)k+1‖pLp(Ω) + e8

≤ e13(kp+ 1 + C(δ′))

∫
Ω

(u+)(k+1)pdx+ e8,

(4.9)
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where it holds

kp+ 1 + C(δ′) = kp+ 1 +

(
4e12

p

) q
p

·
(

(k + 1)p

kp+ 1

) q
p

· 1

q

≤ e14

(
kp+ 1 +

(
(k + 1)

p
p−1

(kp+ 1)
1
p−1

))
≤ e15(kp+ 1)

p
p−1 .

Applying the calculations above to (4.9) provides

kp+ 1

4(k + 1)p

[∫
Ω

|∇(u+)k+1|pdx+

∫
Ω

|(u+)k+1|pdx
]

≤ e16(kp+ 1)
p
p−1

[∫
Ω

(u+)(k+1)pdx+ 1

]
,

equivalently

‖(u+)k+1‖pW 1,p(Ω) ≤ (kp+ 1)
1
p−1 (k + 1)pe17

[∫
Ω

(u+)(k+1)pdx+ 1

]
.

By Sobolev’s embedding theorem a positive constant e18 exists such that

‖(u+)k+1‖Lp∗ (Ω) ≤ e18‖(u+)k+1‖W 1,p(Ω),

where p∗ = Np
N−p if 1 < p < N and p∗ = 2p if p = N . We get

‖u+‖L(k+1)p∗ (Ω)

= ‖(u+)k+1‖
1
k+1

Lp∗ (Ω)

≤ e
1
k+1

18 ‖(u+)k+1‖
1
k+1

W 1,p(Ω)

≤ e
1
k+1

18

(
(kp+ 1)

1
(p−1)p (k + 1)

) 1
k+1

e
1

(k+1)p

17

[∫
Ω

(u+)(k+1)p)dx+ 1

] 1
(k+1)p

.

Since
(

(kp+ 1)
1

(p−1)p (k + 1)
) 1√

k+1 ≥ 1 and lim
k→∞

(
(kp+ 1)

1
(p−1)p (k + 1)

) 1√
k+1

= 1,

there exists a constant e19 > 1 such that
(

(kp+ 1)
1

(p−1)p (k + 1)
) 1
k+1 ≤ e

1√
k+1

19 . We

obtain

‖u+‖L(k+1)p∗ (Ω) ≤ e
1
k+1

18 e
1√
k+1

19 e
1

(k+1)p

17

[∫
Ω

(u+)(k+1)p)dx+ 1

] 1
(k+1)p

. (4.10)

Now, we will use the bootstrap arguments similarly as in the proof of [8, Lemma
3.2] starting with (k1 + 1)p = p∗ to get

‖u+‖L(k+1)p∗ (Ω) ≤ c(k)

for any finite number k > 0 which shows that u+ ∈ Lr(Ω) for any r ∈ (1,∞).
To prove the uniform estimate with respect to k we argue as follows. If there is a
sequence kn →∞ such that ∫

Ω

(u+)(kn+1)pdx ≤ 1,
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we have immediately

‖u+‖L∞(Ω) ≤ 1,

(cf. the proof of [8, Lemma 3.2]). In the opposite case there exists k0 > 0 such that∫
Ω

(u+)(k+1)pdx > 1

for any k ≥ k0. Then we conclude from (4.10)

‖u+‖L(k+1)p∗ (Ω) ≤ e
1
k+1

18 e
1√
k+1

19 e
1

(k+1)p

20 ‖u+‖L(k+1)p , for any k ≥ k0, (4.11)

where e20 = 2e17. Choosing k := k1 such that (k1 + 1)p = (k0 + 1)p∗ yields

‖u+‖L(k1+1)p∗ (Ω) ≤ e
1

k1+1

18 e
1√
k1+1

19 e
1

(k1+1)p

20 ‖u+‖L(k1+1)p(Ω).

Next, we can choose k2 in (4.11) such that (k2 + 1)p = (k1 + 1)p∗ to get

‖u+‖L(k2+1)p∗ (Ω) ≤ e
1

k2+1

18 e
1√
k2+1

19 e
1

(k2+1)p

20 ‖u+‖L(k2+1)p(Ω)

= e
1

k2+1

18 e
1√
k2+1

19 e
1

(k2+1)p

20 ‖u+‖L(k1+1)p∗ (Ω).

By induction we obtain

‖u+‖L(kn+1)p∗ (Ω) ≤ e
1

kn+1

18 e
1√
kn+1

19 e
1

(kn+1)p

20 ‖u+‖L(kn+1)p(Ω)

= e
1

kn+1

18 e
1√
kn+1

19 e
1

(kn+1)p

20 ‖u+‖
L(kn−1+1)p∗ (Ω)

,

where the sequence (kn) is chosen such that (kn + 1)p = (kn−1 + 1)p∗ with k0 > 0.

One easily verifies that kn + 1 =
(
p∗

p

)n
. Thus

‖u+‖L(kn+1)p∗ (Ω) = e

∑n
i=1

1
ki+1

18 e

∑n
i=1

1√
ki+1

19 e

∑n
i=1

1
(ki+1)p

20 ‖u+‖L(k0+1)p∗ (Ω),

with rn = (kn + 1)p∗ → ∞ as n → ∞. Since 1
ki+1 = ( pp∗ )i and p

p∗ < 1 there is a

constant e21 > 0 such that

‖u+‖L(kn+1)p∗ (Ω) ≤ e21‖u+‖L(k0+1)p∗ (Ω) <∞. (4.12)

Let us assume that u+ 6∈ L∞(Ω). Then there exist η > 0 and a set A of positive
measure in Ω such that u+(x) ≥ e21‖u+‖L(k0+1)p∗ (Ω) + η for x ∈ A. It follows that

‖u+‖L(kn+1)p∗ (Ω) ≥
(∫

A

|u+(x)|(kn+1)p∗
) 1

(kn+1)p∗

≥ (e21‖u+‖L(k0+1)p∗ (Ω) + η)|A|
1

(kn+1)p∗ .

Passing to the limes inferior in the inequality above yields

lim inf
n→∞

‖u+‖L(kn+1)p∗ (Ω) ≥ e21‖u+‖L(k0+1)p∗ (Ω) + η,

which is a contradiction to (4.12) and hence, u+ ∈ L∞(Ω). In a similar way one
shows that u− = max{−u, 0} ∈ L∞(Ω). This proves u = u+ − u− ∈ L∞(Ω). �
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Remark 4.2. Note that the finiteness of the integrals∫
Ω

|∇(u+)k+1|pdx,
∫

Ω

|(u+)k+1|pdx

is shown in the end of the proof of Theorem 4.1 by a suitable choice of the parameter
k. This is a typical proceeding in the use of the Moser iteration (see, e.g. [8]).

Let us now suppose an additional condition to the function g : Ω × R → R as
follows.

(G4) g satisfies the condition

|g(x1, s1)− g(x2, s2)| ≤ L
[
|x1 − x2|α + |s1 − s2|α

]
,

for all pairs (x1, s1), (x2, s2) in ∂Ω × [−M0,M0], where M0 is a positive
constant and α ∈ (0, 1].

Theorem 4.3. Let the conditions (A1)–(A3),(F1)–(F3) and (G1)–(G4) be satis-
fied. Let u ∈W 1,p(Ω) be a solution of (1.1). Then u ∈ C1,α(Ω).

Proof. Theorem 4.1 implies u ∈ L∞(Ω). Moreover, we see at once that the as-
sumptions (0.3a)–(0.3d) and (0.6) in [10] are satisfied which yields in view of [10,
Theorem 2] the assertion. � �

Example 4.4. Let A = −∆p, 1 < p < ∞, be the negative p−Laplacian which is
defined by

−∆pu = −div(|∇u|p−2∇u) where ∇u = (∂u/∂x1, . . . , ∂u/∂xN ). (4.13)

The coefficients ai, i = 1, . . . , N are given by

ai(x, s, ξ) = |ξ|p−2ξi.

Thus, hypothesis (A1) is satisfied with k0 = 0 and c0 = 1. Hypothesis (A2) is a
consequence of the inequalities from the vector-valued function ξ 7→ |ξ|p−2ξ (see [2,
Page 37]) and (A3) is satisfied with c1 = 1 and k1 = 0. Our equation in (1.1) gets
the form

−∆pu = f(x, u,∇u) in Ω,

|∇u|p−2 ∂u

∂ν
= g(x, u) on ∂Ω,

(4.14)

where ∂u
∂ν means the outer normal derivative of u with respect to ∂Ω. Theorem

4.1 and Theorem 4.3 ensure under the assumptions (F1)–(F3) and (G1)–(G4) that
every solution u of (4.14) satisfies u ∈ L∞(Ω) and u ∈ C1,α(Ω).

Acknowledgement: The author gratefully acknowledges the helpful sugges-
tions of M. Wilke and R. Zacher during the preparation of the paper.
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