CORRIGENDUM TO "A PRIORI BOUNDS FOR WEAK SOLUTIONS TO ELLIPTIC EQUATIONS WITH NONSTANDARD GROWTH" [DISCRETE CONTIN. DYN. SYST. SER. S 5 (2012), 865–878.]

PATRICK WINKERT AND RICO ZACHER

In this corrigendum we correct a lemma concerning the geometric convergence of sequences of numbers which was used in [2] as Lemma 2.1. As a consequence the statement in the main result changes a bit and the corresponding proof needs some minor different arguments to be fitted.

(a) First, we replace Theorem 1.1 in [2] by the following one:

Theorem 1.1. Let the assumptions in (H) be satisfied. Then there exist positive constants \(\alpha = \alpha(p,q_0,q_1) \) and \(C = C(p,q_0,q_1,a_3,a_4,a_5,b_0,b_1,b_2,c_0,c_1,N,\Omega) \) such that the following assertions hold.

(i) If \(u \in W^{1,p}(\Omega) \) is a weak subsolution of (1.1), then both \(\text{ess sup}_\Omega u \) and \(\text{ess sup}_\Gamma u \) are bounded from above by

\[
C \left[1 + \int_\Omega u^{q_0}(x) \, dx + \int_\Gamma u^{q_1}(x) \, d\sigma \right]^\alpha.
\]

(ii) If \(u \in W^{1,p}(\Omega) \) is a weak supersolution of (1.1), then both \(\text{ess inf}_\Omega u \) and \(\text{ess inf}_\Gamma u \) are bounded from below by

\[
-C \left[1 + \int_\Omega (-u)^{q_0}(x) \, dx + \int_\Gamma (-u)^{q_1}(x) \, d\sigma \right]^\alpha.
\]

(b) Next, we replace Corollary 1.2 in [2] by the following one:

Corollary 1.2. Let the assumptions (H) be satisfied and let \(u \in W^{1,p}(\Omega) \) be a weak solution of (1.1). Then \(u \in L^\infty(\Omega), L^\infty(\Gamma) \) and the estimates in (i) and (ii) from Theorem 1.1 are valid.

(c) Replace reference [32] on page 4, line 5 from bottom by the new reference [1].

(d) Now, we replace Lemma 2.1 in [2] by the following one:

Lemma 2.1. Let \(\{Y_n\}, n = 0, 1, 2, \ldots, \) be a sequence of positive numbers, satisfying the recursion inequality

\[
Y_{n+1} \leq Kb^n \left(Y_n^{1+\delta_1} + Y_n^{1+\delta_2} \right), \quad n = 0, 1, 2, \ldots,
\]

for some \(b > 1, K > 0 \) and \(\delta_2 \geq \delta_1 > 0 \). If

\[
Y_0 \leq \min \left(1, (2K)^{-\frac{1}{\delta_1}} b^{-\frac{1}{\delta_1}} \right)
\]

or

\[
Y_0 \leq \min \left((2K)^{-\frac{1}{\delta_1}} b^{-\frac{1}{\delta_1}}, (2K)^{-\frac{1}{\delta_2}} b^{-\frac{1}{\delta_2}} - \frac{\delta_2 - \delta_1}{\delta_1} \right),
\]

1
then $Y_n \leq 1$ for some $n \in \mathbb{N} \cup \{0\}$. Moreover,

$$Y_n \leq \min \left(1, (2K)^{-\frac{1}{\gamma b-\frac{1}{\gamma} b_{1/2}}} \right), \quad \text{for all } n \geq n_0,$$

where n_0 is the smallest $n \in \mathbb{N} \cup \{0\}$ satisfying $Y_n \leq 1$. In particular, $Y_n \to 0$ as $n \to \infty$.

We note that Lemma 2.1 stated in [2] would have been correct if $K > 1$ instead of $K > 0$. However, we need in our treatment such a result for arbitrary positive K.

Now, at two places in the proof of Theorem 1.1, we need some minor changes.

(e) On page 8, after line 3, we add the following paragraph:

“Here, (p_i^-) and (p_i^+) are defined by, for all $i = 1, \ldots, m$,

$$(p_i^-)_* = \begin{cases} N(p_i^-) & \text{if } (p_i^-) < N, \\ q_i^- + 1 & \text{if } (p_i^-) \geq N, \end{cases} \quad (p_i^+)_* = \begin{cases} (N-1)(p_i^-) & \text{if } (p_i^-) < N, \\ q_i^+ + 1 & \text{if } (p_i^-) \geq N, \end{cases}$$

where $q_i^- = \max_{x \in \Gamma} q_0(x)$ and $q_i^+ = \max_{x \in \Gamma} q_1(x)$ (see Section 2).”

(f) Replace the paragraph on page 12 from formula (3.23) until line 4 from bottom by the following paragraph:

$$Y_0 = \int_{\Omega} (u - k)^{q_0(x)} dx + \int_{\Gamma} (u - k)^{q_1(x)} d\sigma$$

$$\leq \min \left[\left(\frac{16K}{k_0 (1-H)} \right)^{\frac{1}{\gamma_b}} b^{\frac{1}{\gamma_b}} \left(\frac{16K}{k_0 (1-H)} \right)^{-\frac{1}{\gamma_b}} b^{-\frac{1}{\gamma_b}} \frac{\hat{\eta}}{\hat{\eta}{\gamma_b}} - \frac{\epsilon_2 - \epsilon_1}{\gamma_b}, \left(\frac{16K}{k_0 (1-H)} \right)^{-\frac{1}{\gamma_b}} b^{-\frac{1}{\gamma_b}} \frac{\hat{\eta}}{\hat{\eta}{\gamma_b}} - \frac{\epsilon_2 - \epsilon_1}{\gamma_b} \right].$$

Relation (3.23) is clearly satisfied if

$$\int_{\Omega} u_+^{q_0(x)} dx + \int_{\Gamma} u_+^{q_1(x)} d\sigma$$

$$\leq \min \left[\left(\frac{16K}{k_0 (1-H)} \right)^{-\frac{1}{\gamma_b}} b^{\frac{1}{\gamma_b}} \left(\frac{16K}{k_0 (1-H)} \right)^{-\frac{1}{\gamma_b}} b^{-\frac{1}{\gamma_b}} \frac{\hat{\eta}}{\hat{\eta}{\gamma_b}} - \frac{\epsilon_2 - \epsilon_1}{\gamma_b} \right].$$

Hence, if we choose k such that

$$k = \left(1 + \frac{1}{k_0 (1-H)} b^{\frac{1}{\gamma_b}} \frac{1}{\gamma_b} b^{\frac{1}{\gamma_b}} + \frac{\epsilon_2 - \epsilon_1}{\gamma_b} \right) \times \left(1 + \int_{\Omega} u_+^{q_0(x)} dx + \int_{\Gamma} u_+^{q_1(x)} d\sigma \right),$$

then (3.24) and in particular (3.23) are satisfied. Since $k_n \to 2k$ as $n \to \infty$ we obtain

$$\text{ess sup}_\Omega u \leq 2k \quad \text{and} \quad \text{ess sup}_\Gamma u \leq 2k$$

with k given in (3.25).”
References

(P. Winkert) Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany
E-mail address: winkert@math.tu-berlin.de

(R. Zacher) Universität Ulm, Institut für Angewandte Analysis, Helmholtzstraße 18, 89069 Ulm, Germany
E-mail address: rico.zacher@uni-ulm.de