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Abstract. We consider a nonlinear elliptic Dirichlet equation driven by a
nonlinear nonhomogeneous differential operator involving a Carathéodory
function which is (p−1)-superlinear but does not satisfy the Ambrosetti–
Rabinowitz condition. First we prove a three-solutions-theorem extending
an earlier classical result of Wang (Ann Inst H Poincaré Anal Non Linéaire
8(1):43–57, 1991). Subsequently, by imposing additional conditions on
the nonlinearity f(x, ·), we produce two more nontrivial constant sign
solutions and a nodal solution for a total of five nontrivial solutions. In
the special case of (p, 2)-equations we prove the existence of a second
nodal solution for a total of six nontrivial solutions given with complete
sign information. Finally, we study a nonlinear eigenvalue problem and
we show that the problem has at least two nontrivial positive solutions
for all parameters λ > 0 sufficiently small where one solution vanishes in
the Sobolev norm as λ → 0+ and the other one blows up (again in the
Sobolev norm) as λ → 0+.
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1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω and let 1 < p < ∞.

In this paper, we study the following nonlinear nonhomogeneous Dirichlet
problem
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−div a(∇u) = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where a : RN → R
N is a continuous, strictly monotone map which is C1 on

R
N\{0}. The precise conditions on a(·) are given in hypotheses H(a) below.

These conditions are general enough to incorporate some differential operators
of interest in our framework like the p-Laplacian (1 < p < ∞), the (p, q)-
Laplacian (1 < q < p < ∞) and the generalized p-mean curvature differential
operator (1 < p < ∞). The nonlinearity f : Ω × R → R is assumed to be a
Carathéodory function (i.e., x �→ f(x, s) is measurable for all s ∈ R and s �→
f(x, s) is continuous for a.a. x ∈ Ω) which exhibits (p − 1)-superlinear growth
near ±∞ but without satisfying the usual in such cases Ambrosetti–Rabinowitz
condition. Our goal is to prove multiplicity theorems for such problems. For
equations driven by the p-Laplacian, such multiplicity results were proved by
Bartsch and Liu [6], Bartsch et al. [7], Liu [28], Papageorgiou et al. [35] and
Sun [38].

Recall that, if f : Ω × R → R is a Carathéodory function and F (x, s) =∫ s

0
f(x, t)dt, we say that f(x, ·) satisfies the Ambrosetti–Rabinowitz condition

if there exist μ > p and M > 0 such that

0 < μF (x, s) ≤ f(x, s)s for a.a. x ∈ Ω and for all |s| ≥ M, (1.2)

0 < essinf
Ω

F (·,±M), (1.3)

(see Ambrosetti and Rabinowitz [4]). Integrating (1.2) and using (1.3), we
obtain the following growth conditions for the primitive F (x, ·)

η̃|s|μ ≤ F (x, s) for a.a. x ∈ Ω, for all |s| ≥ M , and some η̃ > 0. (1.4)

Thanks to (1.4) we have the much weaker condition

lim
s→±∞

F (x, s)
|s|μ = +∞ uniformly for a.a. x ∈ Ω. (1.5)

This means that the primitive F (x, ·) is (p − 1)-superlinear for a.a. x ∈ Ω.
In this paper we employ (1.5) combined with another asymptotic condition
(see H(f)1(iii)), which together are weaker than the Ambrosetti–Rabinowitz
condition (see (1.2), (1.3)) and fit in our analysis superlinear nonlinearities
with slower growth near ±∞.

The Ambrosetti–Rabinowitz condition, although very convenient in che-
cking the Palais–Smale condition for the energy functional, is rather restrictive
as revealed in the discussion above. So there have been efforts to relax it. For
an overview of the relevant literature we refer to the recent works of Liu [28],
Li and Yang [29], and Miyagaki and Souto [30].

Our tools come from critical point theory and from Morse theory (critical
groups) and involve also truncation and comparison techniques. In the next
section, for the reader’s convenience, we review the main definitions and facts
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which will employ in this work. We also introduce the hypotheses on the map
a(·) and establish some useful consequences of these conditions.

2. Preliminaries and Hypotheses

Let X be a Banach space and X∗ its topological dual while 〈·, ·〉 denotes the
duality brackets to the pair (X∗,X). We have the following definition.

Definition 2.1. The functional ϕ ∈ C1(X) fulfills the Cerami condition (the
C-condition for short) if the following holds: every sequence (un)n≥1 ⊆ X such
that (ϕ(un))n≥1 is bounded in R and (1+‖un‖X)ϕ′(un) → 0 in X∗ as n → ∞,
admits a strongly convergent subsequence.

This compactness type condition on ϕ is more general than the well-
known Palais–Smale condition which we encounter more often in the literature.
Nevertheless, the C-condition suffices to have a deformation theorem from
which one derives the minimax theory of certain critical values of ϕ. One
result of this theory is the so-called mountain pass theorem.

Theorem 2.2. Let ϕ ∈ C1(X) be a functional satisfying the C-condition and
let u1, u2 ∈ X, ‖u2 − u1‖ > ρ > 0,

max{ϕ(u1), ϕ(u2)} < inf{ϕ(u) : ‖u − u1‖X = ρ} =: ηρ

and c = infγ∈Γ max0≤t≤1 ϕ(γ(t)) with Γ = {γ ∈ C([0, 1],X) : γ(0) = u1, γ(1)
= u2}. Then c ≥ ηρ with c being a critical value of ϕ.

By Lp(Ω) (or Lp
(
Ω;RN

)
) and W 1,p

0 (Ω) we denote the usual Lebesgue
and Sobolev spaces with their norms ‖ · ‖p and ‖ · ‖W 1,p

0 (Ω). Thanks to the
Poincaré inequality we have

‖u‖W 1,p
0 (Ω) = ‖∇u‖p for all u ∈ W 1,p

0 (Ω).

The norm of RN is denoted by ‖ · ‖ and (·, ·)RN stands for the inner product
in R

N . For s ∈ R, we set s± = max{±s, 0} and for u ∈ W 1,p
0 (Ω) we define

u±(·) = u(·)±. It is well known that

u± ∈ W 1,p
0 (Ω), |u| = u+ + u−, u = u+ − u−.

The Lebesgue measure on R
N is denoted by |·|N and for a measurable function

h : Ω×R → R (for example, a Carathéodory function), we define the Nemytskij
operator corresponding to the function h by

Nh(u)(·) = h(·, u(·)) for all u ∈ W 1,p
0 (Ω).

Evidently, x �→ Nh(u)(x) is measurable.
In the analysis of problem (1.1) in addition to the Sobolev space W 1,p

0 (Ω)
we will also use the ordered Banach space

C1
0 (Ω) =

{
u ∈ C1(Ω) : u

∣
∣
∂Ω

= 0
}
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and its positive cone

C1
0 (Ω)+ =

{
u ∈ C1

0 (Ω) : u(x) ≥ 0 for all x ∈ Ω
}

.

This cone has a nonempty interior given by

int
(
C1

0 (Ω)+
)

=
{

u ∈ C1
0 (Ω)+ : u(x) > 0 for all x ∈ Ω;

∂u

∂n
(x) < 0 for all x ∈ ∂Ω

}

,

where n(·) stands for the outward unit normal on ∂Ω.
Let ϑ ∈ C1(0,+∞) be a function satisfying

0 < ĉ ≤ tϑ′(t)
ϑ(t)

≤ c0 and c1t
p−1 ≤ ϑ(t) ≤ c2(1 + tp−1) (2.1)

for all t > 0 and with some constants ĉ, c0, c1, c2 > 0.
Then the hypotheses on a(·) are the following.

H(a): a(ξ) = a0(‖ξ‖)ξ for all ξ ∈ R
N with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,∞), t �→ ta0(t) is strictly increasing, limt→0+ ta0(t) = 0, and
limt→0+

ta′
0(t)

a0(t)
> −1;

(ii) ‖∇a(ξ)‖ ≤ c3
ϑ(‖ξ‖)

‖ξ‖ for all ξ ∈ R
N\{0} and some c3 > 0;

(iii) (∇a(ξ)y, y)RN ≥ ϑ(‖ξ‖)
‖ξ‖ ‖y‖2 for all ξ ∈ R

N\{0} and all y ∈ R
N .

Remark 2.3. Owing to hypothesis H(a)(i) it follows that a ∈ C1(RN\{0},RN )∩
C(RN ,RN ) and hence, hypotheses H(a)(ii), (iii) make sense. Let G0(t) =∫ t

0
sa0(s)ds and let G(ξ) = G0(‖ξ‖) for all ξ ∈ R

N . Then

∇G(ξ) = G′
0(‖ξ‖)

ξ

‖ξ‖ = a0(‖ξ‖)ξ = a(ξ) for all ξ ∈ R
N\{0},

which means that G(·) is the primitive of a(·). Obviously, G(·) is convex and
since G(0) = 0 we have the estimate

G(ξ) ≤ (a(ξ), ξ)RN for all ξ ∈ R
N . (2.2)

These hypotheses have some interesting consequences on the map a(·).
Lemma 2.4. Let the hypotheses H(a) be satisfied. Then there hold

(a) ξ → a(ξ) is maximal monotone and strictly monotone;
(b) ‖a(ξ)‖ ≤ c4(1 + ‖ξ‖p−1) for all ξ ∈ R

N and some c4 > 0;
(c) (a(ξ), ξ)RN ≥ c1

p−1‖ξ‖p for all ξ ∈ R
N .

Taking into account Lemma 2.4 combined with (2.2) we infer the following
growth estimates for the primitive G(·).
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Corollary 2.5. If hypotheses H(a) hold, then

c1
p(p − 1)

‖ξ‖p ≤ G(ξ) ≤ c5 (1 + ‖ξ‖p) for all ξ ∈ R
N and some c5 > 0.

Example 2.6. The following maps satisfy hypotheses H(a):

(a) a(ξ) = ‖ξ‖p−2ξ with 1 < p < ∞.
This map corresponds to the p-Laplacian defined by

Δpu = div(‖∇u‖p−2∇u) for all u ∈ W 1,p
0 (Ω).

(b) a(ξ) = ‖ξ‖p−2ξ + ‖ξ‖q−2ξ with 1 < q < p < ∞.
This map corresponds to the (p, q)-differential operator defined by

Δpu + Δqu for all u ∈ W 1,p
0 (Ω).

Note that this operator arises in problems of mathematical physics such
as quantum physics (see Benci et al. [8]) and in plasma physics and
biophysics (see Cherfils and Il’yasov [12]).

(c) a(ξ) = (1 + ‖ξ‖2) p−2
2 ξ with 1 < p < ∞.

This operator represents the generalized p-mean curvature differential
operator defined by

div
[
(1 + ‖∇u‖2) p−2

2 ∇u
]

for all u ∈ W 1,p
0 (Ω).

(d) a(ξ) = ‖ξ‖p−2ξ(1 + 1
1+‖ξ‖ ) with 1 < p < ∞.

Now, let f0 : Ω × R → R be a Carathéodory function with subcritical
growth in s ∈ R, that is

|f0(x, s)| ≤ a(x)
(
1 + |s|r−1

)
for a.a. x ∈ Ω, and all s ∈ R,

with a ∈ L∞(Ω), and 1 < r < p∗, where p∗ is the critical exponent of p given
by

p∗ =

{
Np

N−p if p < N,

+∞ if p ≥ N.

Let F0(x, s) =
∫ s

0
f0(x, t)dt and let ϕ0 : W 1,p

0 (Ω) → R be the C1-functional
defined by

ϕ0(u) =
∫

Ω

G(∇u)dx −
∫

Ω

F0(x, u)dx.

The following result, originally due to Brezis and Nirenberg [10], can be found
in Gasiński and Papageorgiou [22]. We also refer to earlier results in this di-
rection in Garćıa Azorero et al. [19] and more recently, in Motreanu and Pa-
pageorgiou [32] and Winkert [41].
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Proposition 2.7. Let the assumptions in H(a) be satisfied. If u0 ∈ W 1,p
0 (Ω) is

a local C1
0 (Ω)-minimizer of ϕ0, i.e., there exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1
0 (Ω) with ‖h‖C1

0 (Ω) ≤ ρ0,

then u0 ∈ C1,β
0 (Ω) for some β ∈ (0, 1) and u0 is also a local W 1,p

0 (Ω)-
minimizer of ϕ0, i.e., there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ W 1,p
0 (Ω) with ‖h‖W 1,p

0 (Ω) ≤ ρ1.

Now, let 1
p + 1

p′ = 1 and let A : W 1,p
0 (Ω) → (W 1,p

0 (Ω))∗ = W−1,p′
(Ω) be

the nonlinear map defined by

〈A(u), v〉 =
∫

Ω

(a(∇u),∇v)RN dx for all u, v ∈ W 1,p
0 (Ω). (2.3)

Thanks to the results of Gasiński and Papageorgiou [21]) the operator A
has the following properties.

Proposition 2.8. Under hypotheses H(a) the operator A : W 1,p
0 (Ω) → W−1,p′

(Ω) defined by (2.3) is bounded, continuous, monotone (hence maximal mono-
tone) and of type (S)+, i.e., if un ⇀ u in W 1,p

0 (Ω) and lim supn→∞〈A(un), un−
u〉 ≤ 0, then un → u in W 1,p

0 (Ω).

Given 1 < r < ∞, the r-Laplacian Δr is a special case of A which is
defined by

〈Δr(u), v〉 =
∫

Ω

‖∇u‖r−2(∇u,∇v)RN dx for all u, v ∈ W 1,r
0 (Ω).

If r = 2, then Δr = Δ becomes the well-known Laplace operator.
Let us recall some basic facts about the spectrum of the r-Laplacian with

Dirichlet boundary condition. Consider the nonlinear eigenvalue problem

−Δru = λ̂|u|r−2u in Ω,

u = 0 on ∂Ω,
(2.4)

we say that a number λ̂ ∈ R is an eigenvalue of (−Δr,W
1,r
0 (Ω)) if problem (2.4)

possesses a nontrivial solution û ∈ W 1,p
0 (Ω) which is said to be an eigenfunction

corresponding to the eigenvalue λ̂. The set of all eigenvalues of (2.4) is denoted
by σ̂(r) and it is known that σ̂(r) has a smallest element λ̂1(r) which has the
following properties:

• λ̂1(r) is positive;
• λ̂1(r) is isolated, that is, there exists ε > 0 such that (λ̂1(r), λ̂1(r) + ε) ∩

σ̂(r) = ∅;
• λ̂1(r) is simple, that is, if u, v are two eigenfunctions corresponding to

λ̂1(r), then u = kv for some k ∈ R\{0};
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• λ̂1(r) = inf
[‖∇u‖r

r

‖u‖r
r

: u ∈ W 1,r
0 (Ω), u �= 0

]

. (2.5)

The infimum in (2.5) is realized on the one dimensional eigenspace corre-
sponding to λ̂1(r) > 0. In what follows we denote by û1(r) the Lr-normalized
eigenfunction (i.e. ‖û1(r)‖r = 1) associated to λ̂1(r). From the representa-
tion in (2.5) we easily see that û1(r) does not change sign in Ω and so we
may assume that û1(r) ≥ 0. The nonlinear regularity theory implies that
û1(r) ∈ C1

0 (Ω) and the usage of Vazquez’s strong maximum principle [39]
provides that û1(r) ∈ int

(
C1

0 (Ω)+
)
.

As a consequence of the properties above we have the following simple
lemma (see Papageorgiou and Kyritsi Yiallourou [34, p. 356]).

Lemma 2.9. Let η ∈ L∞(Ω)+ be such that η(x) ≤ λ̂1(p) a.e. in Ω and η �=
λ̂1(p). Then there exists a positive number κ such that

‖∇u‖p
p −

∫

Ω

η(x)|u|pdx ≥ κ‖∇u‖p
p for all u ∈ W 1,p

0 (Ω).

The Lusternik–Schnirelmann minimax scheme produces a strictly increas-
ing sequence (λ̂k(r))k≥1 of eigenvalues such that λ̂k(r) → +∞ as k → ∞. We
do not know if this sequence exhausts the whole spectrum of (−Δr,W

1,r
0 (Ω))

but if N = 1 (ordinary differential equations) or if r = 2 (linear eigen-
value problem), then the Lusternik–Schnirelmann sequence of eigenvalues is
the whole spectrum. In the case r = 2 we denote by E(λ̂k(2)), k ≥ 1, the
eigenspace corresponding to the eigenvalue λ̂k(2) and we have a direct sum
decomposition of the form

H1
0 (Ω) =

⊕

k≥1

E
(
λ̂k(2)

)
.

Next, let us recall some basic definitions and facts about Morse theory.
Let X be a Banach space and let (Y1, Y2) be a topological pair such that
Y2 ⊆ Y1 ⊆ X. For every integer k ≥ 0 the term Hk(Y1, Y2) stands for the
k

th=-relative singular homology group with integer coefficients.
Recall that

Hk(Y1, Y2) = Zk(Y1, Y2)
/

Bk(Y1, Y2) for all k ∈ N0,

where Zk(Y1, Y2) is the group of relative singular k-cycles of Y1 mod Y2 (that
is, Zk(Y1, Y2) = ker ∂k with ∂k being the boundary homomorphism) and
Bk(Y1, Y2) is the group of relative singular k-boundaries of Y1 mod Y2 (that
is, Bk(Y1, Y2) = im ∂k+1). We know that ∂k−1 ◦ ∂k = 0 for all k ∈ N, hence
Bk(Y1, Y2) ⊆ Zk(Y1, Y2) and so the quotient

Zk(Y1, Y2)
/

Bk(Y1, Y2)
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makes sense. Note that Hk(Y1, Y2) = 0 for all k < 0. Given ϕ ∈ C1(X) and
c ∈ R, we introduce the following sets:

ϕc = {u ∈ X : ϕ(u) ≤ c} (the sublevel set of ϕ at c),

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c} (the critical set of ϕ at the level c).

For every isolated critical point u ∈ Kc
ϕ the critical groups of ϕ at u ∈ Kc

ϕ

are defined by

Ck(ϕ, u) = Hk(ϕc ∩ U,ϕc ∩ U\{u}) for all k ≥ 0,

where U is a neighborhood of u such that Kϕ ∩ ϕc ∩ U = {u}. The excision
property of singular homology theory implies that the definition of critical
groups above is independent of the particular choice of the neighborhood U .

Suppose that ϕ ∈ C1(X) satisfies the C-condition and that inf ϕ(Kϕ) >
−∞. Let c < inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ≥ 0 (2.6)

(see Bartsch and Li [5]). This definition is independent of the choice of the
level c < inf ϕ(Kϕ) which is a consequence of the second deformation theorem
(see, for example, Gasiński and Papageorgiou [20, p. 628]).

We now assume that Kϕ is finite and introduce the following series in
t ∈ R:

M(t, u) =
∑

k≥0

rankCk(ϕ, u)tk for all u ∈ Kϕ,

P (t,∞) =
∑

k≥0

rankCk(ϕ,∞)tk.

Then, the Morse relation (see [11, Theorem 5.1.29]) reads as follows:
∑

u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t) for all t ∈ R, (2.7)

with Q(t) being a formal series in t ∈ R with nonnegative integer coefficients.
Suppose next that X = H is a Hilbert space and let U be a neighborhood

of a given point x ∈ H. We further assume that ϕ ∈ C2(U), Kϕ is finite
and u ∈ Kϕ. The Morse index of u, denoted by μ = μ(u), is defined to
be the supremum of the dimensions of the vector subspaces of H on which
ϕ′′(u) ∈ L (H) is negative definite. The nullity of u, denoted by ν = ν(u), is
defined to be the dimension of kerϕ′′(U). We say that u ∈ Kϕ is nondegenerate
if ϕ′′(u) is invertible, that is, ν = ν(u) = 0. At a nondegenerate critical point
u we have

Ck(ϕ, u) = δk,μZ for all k ≥ 0,

where δk,μ stands for the well-known Kronecker symbol.
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3. Three Nontrivial Solutions

In this section, using a combination of variational and Morse theoretic meth-
ods, we prove a multiplicity theorem producing three nontrivial solutions for
problem (1.1) when the nonlinearity f(x, ·) is (p − 1)-superlinear but does not
necessarily satisfies the Ambrosetti–Rabinowitz condition. Our result in this
section improves significantly the well-known multiplicity theorem of Wang
[40]. We point out that the results in this section are basically obtained by
Gasiński and Papageorgiou in [23]. We decided to add these results since we
need some steps in later sections and in order to give a complete analysis of
superlinear equations involving nonhomogeneous operators. Furthermore, we
note that our assumptions on the differential operator are slightly different
than those in [23, see H(a)(i)].

First we slightly strengthen the assumptions on the map a(·).
H(a)1: a(ξ) = a0(‖ξ‖)ξ for all ξ ∈ R

N with a0(t) > 0 for all t > 0, hypotheses
H(a)1(i)–(iii) are the same as the corresponding hypotheses H(a)(i)–
(iii) and

(iv) pG0(t) − t2a0(t) ≥ −c6 and t2a0(t) − G0(t) ≥ η̂tp for all t > 0 and
for some c6, η̂ > 0.

Remark 3.1. Note that the examples given in Example 2.6 satisfy this new
condition stated in H(a)1(iv).

The hypotheses on the mapping f are the following:

H(f)1: f : Ω × R → R is a Carathéodory function with f(x, 0) = 0 for a.a.
x ∈ Ω such that
(i) |f(x, s)| ≤ a(x)(1 + |s|r−1) for a.a. x ∈ Ω, for all s ∈ R, with

a ∈ L∞(Ω)+ and p < r < p∗;
(ii) if F (x, s) =

∫ s

0
f(x, t)dt, then

lim
s→±∞

F (x, s)
|s|p = +∞ uniformly for a.a. x ∈ Ω;

(iii) there exist τ ∈ ((r − p)max{N
p , 1}, p∗) and β0 > 0 such that

lim inf
s→±∞

f(x, s)s − pF (x, s)
|s|τ ≥ β0 uniformly for a.a. x ∈ Ω;

(iv) there exists η ∈ L∞(Ω)+ with η(x) ≤ c1
p−1 λ̂1(p) a.e. in Ω and η �=

c1
p−1 λ̂1(p) such that

lim sup
s→0

pF (x, s)
|s|p ≤ η(x) uniformly for a.a. x ∈ Ω;

(v) for every ρ > 0 there exists κρ > 0 such that

f(x, s)s + κρ|s|p ≥ 0 for a.a. x ∈ Ω and all |s| ≤ ρ.
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Remark 3.2. Hypothesis H(f)1(ii) amounts to the superlinearity of the prim-
itive F (x, ·). This condition together with H(f)1(iii) implies that f(x, ·) is
(p − 1)-superlinear. We point out that the assumptions in H(f)1(ii), (iii) are
weaker than the Ambrosetti–Rabinowitz condition (see (1.2), (1.3)) which is
the usual hypothesis when dealing with superlinear problems (see for example
Wang [40]). Indeed, assume that f(x, ·) satisfies the Ambrosetti–Rabinowitz
condition and note that we may suppose (r − p)max{N

p , 1} < μ. Hence, we
have

f(x, s) − pF (x, s)
|s|μ =

f(x, s)s − μF (x, s)
|s|μ +

(μ − p)F (x, s)
|s|μ

≥ (μ − p)η for all x ∈ Ω and for all |s| ≥ M

(see (1.2) and (1.4)).

Example 3.3. For the sake of simplicity we drop the x-dependence and consider
the following two functions satisfying hypotheses H(f)1:

f1(s) =

{
ηsp if |s| ≤ 1,

ηsr if |s| > 1
with η ∈ (0, λ̂1(p)) and p < r < p∗;

f2(s) = |s|p−2s ln(1 + |s|).
Note that f1 satisfies the Ambrosetti–Rabinowitz condition but f2 does not.

Let ϕ : W 1,p
0 (Ω) → R be the energy functional of problem (1.1) given by

ϕ(u) =
∫

Ω

G(∇u)dx −
∫

Ω

F (x, u)dx,

which is of class C1. Furthermore, we define the positive and negative trunca-
tions of f(x, ·), namely f±(x, s) = f(x,±s±), and consider the C1-functionals
ϕ± : W 1,p

0 (Ω) → R defined by

ϕ±(u) =
∫

Ω

G(∇u)dx −
∫

Ω

F±(x, u)dx,

with F±(x, s) =
∫ s

0
f±(x, t)dt.

Proposition 3.4. If H(a)1 and H(f)1 are satisfied, then the functionals ϕ and
ϕ± fulfill the C-condition.

Proof. We start with the proof for ϕ+. To this end, let (un)n≥1 ⊆ W 1,p
0 (Ω) be

a sequence such that

|ϕ+(un)| ≤ M1 for all n ≥ 1 (3.1)

with some M1 > 0 and
(
1 + ‖un‖W 1,p

0 (Ω)

)
ϕ′
+(un) → 0 in W−1,p′

(Ω). (3.2)
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By means of (3.2) we obtain

|〈ϕ′
+(un), v〉| ≤

εn‖v‖W 1,p
0 (Ω)

1 + ‖un‖W 1,p
0 (Ω)

for all v ∈ W 1,p
0 (Ω) and εn ↘ 0 which means that

∣
∣
∣
∣

∫

Ω

(a(∇un),∇v)
RN dx −

∫

Ω

f+(x, un)vdx

∣
∣
∣
∣ ≤

εn‖v‖W 1,p
0 (Ω)

1 + ‖un‖W 1,p
0 (Ω)

(3.3)

for all n ≥ 1. Acting on (3.3) with v = −u−
n ∈ W 1,p

0 (Ω) and applying
Lemma 2.4(c) yields

c1
p − 1

‖∇u−
n ‖p ≤ εn,

for all n ≥ 1 which means that

u−
n → 0 in W 1,p

0 (Ω) as n → +∞. (3.4)

Then, from (3.1) and (3.4) we obtain
∫

Ω

pG(∇u+
n )dx −

∫

Ω

pF (x, u+
n )dx ≤ M2, (3.5)

with some M2 > 0. Taking v = u+
n ∈ W 1,p

0 (Ω) in (3.3) gives

−
∫

Ω

(
a(∇u+

n ),∇u+
n

)
RN dx +

∫

Ω

f(x, u+
n )u+

n dx ≤ εn, (3.6)

for all n ≥ 1. Now, adding (3.5) and (3.6), we get

M3 ≥
∫

Ω

[
pG(∇u+

n ) − (
a(∇u+

n ),∇u+
n

)
RN

]
dx

+
∫

Ω

[
f(x, u+

n )u+
n − pF (x, u+

n )
]
dx, (3.7)

for all n ≥ 1 and some M3 > 0. By virtue of hypothesis H(a)1(iv) we derive
from (3.7)

∫

Ω

(
f(x, u+

n )u+
n − pF (x, u+

n )
)
dx ≤ M4. (3.8)

Taking into account hypotheses H(f)1(i) and (iii), there is a number β1 ∈ (0, β0)
and a constant M5 > 0 such that

β1|s|τ − M5 ≤ f(x, s)s − pF (x, s) for a.a. x ∈ Ω and for all s ≥ 0. (3.9)

Combining (3.8) and (3.9) gives
(
u+

n

)
n≥1

is bounded in Lτ (Ω). (3.10)
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Let us first consider the case N > p. Without loss of generality we may
suppose that 1 < τ ≤ r < p∗ (cf. hypothesis H(f)1(iii)). Then, we find a
number t ∈ [0, 1) such that

1
r

=
1 − t

τ
+

t

p∗ (3.11)

and the usage of the interpolation theory implies that
∥
∥u+

n

∥
∥

r
≤ ∥
∥u+

n

∥
∥1−t

τ

∥
∥u+

n

∥
∥t

p∗ (3.12)

(see Gasiński and Papageorgiou [20, p. 905]). Combining (3.10), (3.12), and
the Sobolev embedding theorem yields

∥
∥u+

n

∥
∥r

r
≤ M6

∥
∥u+

n

∥
∥tr

W 1,p
0 (Ω)

for all n ≥ 1 (3.13)

with some positive constant M6. Applying again v = u+
n in (3.3) one has

∣
∣
∣
∣

∫

Ω

(
a
(∇u+

n

)
,∇u+

n

)
RN dx −

∫

Ω

f(x, u+
n )u+

n dx

∣
∣
∣
∣ ≤ εn for all n ≥ 1. (3.14)

Taking into account the growth condition of hypothesis H(f)1(i) we infer

f(x, s)s ≤ â(x) + M7|s|r for a.a. x ∈ Ω, for all s ∈ R, (3.15)

with â ∈ L∞(Ω) and M7 > 0. With the aid of Lemma 2.4(c) and (3.15) we
obtain from (3.14)

c1
p − 1

∥
∥∇u+

n

∥
∥p

p
≤ M8

(
1 +

∥
∥u+

n

∥
∥r

r

)
for all n ≥ 1

with M8 > 0. This estimate in conjunction with (3.13) yields
∥
∥u+

n

∥
∥p

W 1,p
0 (Ω)

≤ M9

(
1 +

∥
∥u+

n

∥
∥tr

W 1,p
0 (Ω)

)
for all n ≥ 1 (3.16)

and for some M9 > 0. Taking into account the choice of τ (see hypothesis
H(f)1(iii)) and relation (3.11) we see that tr < p which implies that (u+

n )n≥1 ⊆
W 1,p

0 (Ω) is bounded (see (3.16)).
Now, let N ≤ p and note that in this case we have p∗ = ∞ and the

Sobolev embedding theorem gives W 1,p
0 (Ω) ⊆ Lq̃(Ω) for all q̃ ∈ [1,+∞). Let

q̂ be a number such that 1 < τ ≤ r < q̂. As before, we find t ∈ [0, 1) such that
1
r

=
1 − t

τ
+

t

q̂
.

Hence

tr =
q̂(r − τ)
q̂ − τ

.

Moreover, we observe that

tr =
q̂(r − τ)
q̂ − τ

→ r − τ as q̂ → +∞ = p∗. (3.17)

By the choice of τ and since N ≤ p we have r−τ < p. Combining this fact with
(3.17) we see that tr < p if q̂ is chosen large enough. Now we may apply the
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same arguments as in the case N > p where p∗ is replaced by q̂ > r sufficiently
large. This yields the boundedness of the sequence (u+

n )n≥1 in W 1,p
0 (Ω) in the

case N ≤ p as well. We have shown in both cases that (u+
n )n≥1 is bounded

in W 1,p
0 (Ω) and due to (3.4) we have that (un)n≥1 is bounded in W 1,p

0 (Ω) as
well. Now we may suppose that (for a subsequence if necessary)

un ⇀ u in W 1,p
0 (Ω) and un → u in Lp(Ω). (3.18)

Using again (3.3) with the special choice v = un − u and passing to the limit
as n goes to +∞, we derive, thanks to (3.18),

lim
n→∞ 〈A(un), un − u〉 = 0.

Since A satisfies the (S)+-property (see Proposition 2.8) we finally conclude

un → u in W 1,p
0 (Ω).

This proves that ϕ fulfills the C-condition. Analogously, applying similar ar-
guments, one can prove the same result for the functionals ϕ and ϕ−. That
finishes the proof. �

Now we are going to show that the functionals ϕ and ϕ± satisfy the
mountain pass geometry.

Proposition 3.5. Assume H(a)1 and H(f)1, then u = 0 is a local minimizer
of the functionals ϕ and ϕ±.

Proof. We only show this proposition for ϕ+, the proofs for ϕ and ϕ− can be
done similarly. By means of hypothesis H(f)1(iv) we find for every ε > 0 a
number δ = δ(ε) > 0 such that

F (x, s) ≤ 1
p
(η(x) + ε)|s|p for a.a. x ∈ Ω and for all |s| ≤ δ. (3.19)

Let u ∈ C1
0 (Ω) be such that ‖u‖C1

0 (Ω) ≤ δ. With regards to Corollary 2.5,
(3.19), Lemma 2.9, and (2.5) we obtain

ϕ+(u) =
∫

Ω

G(∇u)dx −
∫

Ω

F+(x, u)dx

≥ c1
p(p − 1)

‖∇u‖p
p − 1

p

∫

Ω

η(x)
(
u+

)p
dx − ε

p

∥
∥u+

∥
∥p

p

≥ 1
p

(
c1

p − 1
‖∇u‖p

p −
∫

Ω

η(x)|u|pdx

)

− ε

pλ̂1(p)
‖∇u‖p

p

≥ 1
p

(

κ − ε

λ̂1(p)

)

‖∇u‖p
p. (3.20)

Choosing ε > 0 small enough such that ε ∈ (0, κλ̂1(p)) we see from (3.20) that

ϕ+(u) ≥ 0 = ϕ+(0) for all u ∈ C1
0 (Ω) with 0 ≤ ‖u‖C1

0 (Ω) ≤ δ.
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This implies that u = 0 is a local C1
0 (Ω)-minimizer of ϕ+. Invoking Proposi-

tion 2.7 yields that u = 0 is a local W 1,p
0 (Ω)-minimizer of ϕ+ as well. �

It is easy to see that the critical points of ϕ+ (resp. of ϕ−) are positive
(resp. negative). Therefore, we may assume that u = 0 is an isolated critical
point of the functionals ϕ±, otherwise there would exist a sequence of distinct
positive, resp. negative, solutions of (1.1).

Consequently, we find small numbers ρ± ∈ (0, 1) such that

inf
{

ϕ±(u) : ‖u‖W 1,p
0 (Ω) = ρ±

}
=: m± > 0 = ϕ±(0) (3.21)

(see Aizicovici et al. [1, Proof of Proposition 29]).
Now we are going to prove the existence of two constant sign solutions

of problem (1.1).

Proposition 3.6. Under the assumptions H(a)1 and H(f)1 problem (1.1) pos-
sesses at least two constant sign solutions u0 ∈ int(C1

0 (Ω)+) and v0 ∈ − int
(C1

0 (Ω)+).

Proof. We start with the proof of the existence of the positive solution. Re-
call that û1(p) ∈ int(C1

0 (Ω)+) denotes the Lp-normalized (i.e. ‖û1(p)‖p = 1)
eigenfunction corresponding to the first eigenvalue λ̂1(p) of (−Δp,W

1,p
0 (Ω)).

First, we show that

ϕ+(tû1(p)) → −∞ as t → +∞. (3.22)

By means of hypotheses H(f)1(i) and (ii), for every ε > 0 there exists a
constant M10 = M10(ε) > 0 such that

F (x, s) ≥ ε|s|p − M10 for a.a. x ∈ Ω and for all s ∈ R. (3.23)

From Corollary 2.5 and (3.23) we obtain for t > 0

ϕ+ (tû1(p)) ≤ c5|Ω|N + tp‖∇û1(p)‖p
p − εtp + M10|Ω|N

= tp
(
λ̂1(p) − ε

)
+ (c5 + M10)|Ω|N . (3.24)

Choosing ε > λ̂1(p) in (3.24) and letting t → +∞ implies (3.22).
Taking into account (3.22) and (3.21) we find a number t > 0 large enough

such that

ϕ+ (tû1(p)) ≤ ϕ+(0) = 0 < m+ and ρ+ < ‖tû1(p)‖W 1,p
0 (Ω) . (3.25)

Thanks to (3.21), (3.25) and Proposition 3.4 we may apply Theorem 2.2
(mountain pass theorem) which provides the existence of an element u0 ∈
W 1,p

0 (Ω) such that

ϕ+(0) = 0 < m+ ≤ ϕ+(u0) and ϕ′
+(u0) = 0. (3.26)

The first relation in (3.26) ensures that u0 �= 0 and the second one results in

〈Au0, v〉 =
〈
Nf+(u0), v

〉
for all v ∈ W 1,p

0 (Ω). (3.27)
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Choosing v = −u−
0 as test function in (3.27) gives

∫

Ω

(
a(∇u0),−∇u−

0

)
RN dx = 0. (3.28)

Combining (3.28) and Lemma 2.4(c) we have
c1

p − 1

∥
∥∇u−

0

∥
∥p

p
≤ 0.

Hence,

u0 ≥ 0, u0 �= 0.

Then, (3.27) becomes

−div a(∇u0) = f(x, u0) in Ω,

u = 0 on ∂Ω.

From the nonlinear regularity theory we obtain u0 ∈ L∞(Ω) (see Ladyzhen-
skaya and Ural’tseva [26, p. 286]) and then u0 ∈ C1

0 (Ω) (see Lieberman [27]).
By means of hypothesis H(f)1(v) we find, for ρ = ‖u0‖C(Ω), a constant κρ > 0
such that

−div a(∇u0(x)) + κρu0(x)p−1=f(x, u0(x))+κρu0(x)p−1≥0 for a.a. x∈Ω.

Hence,

div a(∇u0(x)) ≤ κρu0(x)p−1 for a.a. x ∈ Ω. (3.29)

Let γ(t) = ta0(t) for t > 0. We have

tγ′(t) = t2a′
0(t) + ta0(t). (3.30)

Integration by parts and applying H(a)1(iv) yields
∫ t

0

sγ′(s)ds = tγ(t) −
∫ t

0

γ(s)ds = t2a0(t) − G0(t) ≥ η̂tp. (3.31)

Then, due to (3.29) and (3.31), we may apply the strong maximum principle
of Pucci and Serrin [37, p. 111] which implies that u0(x) > 0 for all x ∈ Ω. In
addition, the boundary point theorem of Pucci and Serrin [37, p. 120] yields
u0 ∈ int

(
C1

0 (Ω)+
)
.

Using similar arguments one could easily verify the assertion for the ex-
istence of the constant sign solution v0 ∈ − int

(
C1

0 (Ω)+
)

working with the
functional ϕ− instead of ϕ+. �

Now, we are interested to find a third nontrivial solutions of (1.1) via
Morse theory. To this end, we will compute certain critical groups of the func-
tionals ϕ and ϕ±. We start with the computation of the critical groups of ϕ
at infinity.

Proposition 3.7. Assume H(a)1 and H(f)1, then Ck(ϕ,∞) = 0 for all k ≥ 0.
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Proof. By means of H(f)1(i) and (ii), for every ε > 0, there exists a constant
M11 > 0 such that

F (x, s) ≥ ε|s|p − M11 for a.a. x ∈ Ω and for all s ∈ R. (3.32)

By virtue of Corollary 2.5 and (3.32) there holds for u ∈ W 1,p
0 (Ω)\{0} and for

every t > 0

ϕ(tu) =
∫

Ω

G(t∇u)dx −
∫

Ω

F (x, tu)dx

≤ c5
(|Ω|N + tp‖∇u‖p

p

) − εtp‖u‖p
p + M11|Ω|N

= tp
(
c5‖∇u‖p

p − ε‖u‖p
p

)
+ M12,

with M12 = (c5 + M11)|ΩN |. Choosing ε >
c5‖∇u‖p

p

‖u‖p
p

implies that

ϕ(tu) → −∞ as t → +∞. (3.33)

Thanks to the hypotheses H(f)1(i) and (iii), there is a number β2 ∈ (0, β0) and
a constant M13 > 0 such that

pF (x, s) − f(x, s)s≤M13 − β2|s|τ for a.a. x∈Ω and for all s∈R. (3.34)

Taking into account hypothesis H(a)1(iv) and (3.34) we obtain
d

dt
ϕ(tu) = 〈ϕ′(tu), u〉

=
1
t
〈ϕ′(tu), tu〉

=
1
t

[∫

Ω

(a(t∇u), t∇u)RN dx −
∫

Ω

f(x, tu)tudx

]

≤ 1
t

[∫

Ω

pG(t∇u)dx + (c6 + M13)|Ω|N −
∫

Ω

pF (x, tu)dx

]

=
1
t

[pϕ(tu) + M14] (3.35)

with M14 = (c6 + M13)|Ω|N . Combining (3.33) and (3.35) we conclude that
d

dt
ϕ(tu) < 0 for t > 0 sufficiently large.

Therefore, for every u ∈ ∂B1 = {y ∈ W 1,p
0 (Ω) : ‖y‖W 1,p

0 (Ω) = 1}, there exists
a unique ψ(u) > 0 such that

ϕ(ψ(u)u) = ρ∗ < −M14

p

(see (3.35)). Moreover, the implicit function theorem implies that ψ ∈ C(∂B1).
Now we extend ψ on W 1,p

0 (Ω)\{0} by setting

ψ̃(u) =
1

‖u‖W 1,p
0 (Ω)

ψ

(
u

‖u‖W 1,p
0 (Ω)

)

for all u ∈ W 1,p
0 (Ω)\{0}.
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It is clear that ψ̃ ∈ C(W 1,p
0 (Ω)\{0}) and ϕ(ψ̃(u)u) = ρ∗ for all u ∈ W 1,p

0 (Ω)\
{0}. Note that ϕ(u) = ρ∗ implies ψ(u) = 1. Then, putting

ψ̂(u) =

{
1 if ϕ(u) ≤ ρ∗,
ψ̃(u) if ϕ(u) > ρ∗,

(3.36)

we have ψ̂ ∈ C(W 1,p
0 (Ω)\{0}).

Next, we introduce the deformation h : [0, 1]×W 1,p
0 (Ω)\{0} → W 1,p

0 (Ω)\
{0} defined by

h(t, u) = (1 − t)u + tψ̂(u)u.

It is easy to see that h(0, u) = u and h(1, u) ∈ ϕρ∗ for all u ∈ W 1,p
0 (Ω)\{0}.

Moreover, thanks to (3.36) there holds

h(t, ·)∣∣
ϕρ∗ = id

∣
∣
ϕρ∗ for all t ∈ [0, 1].

This means that the sublevel set ϕρ∗ is a deformation retract of W 1,p
0 (Ω)\{0}.

Because of the radial retraction u → u
‖u‖

W
1,p
0 (Ω)

for all u ∈ W 1,p
0 (Ω)\{0} we

see that ∂B1 is a retract of W 1,p
0 (Ω)\{0} while the deformation

h0(t, u) = (1 − t)u + t
u

‖u‖W 1,p
0 (Ω)

for all (t, u) ∈ [0, 1] × W 1,p
0 (Ω)\{0},

points out that W 1,p
0 (Ω)\{0} is deformable into ∂B1 over W 1,p

0 (Ω). Then, we
may apply Theorem 6.5 of Dugundji [16, p. 325] which implies that ∂B1 is
a deformation retract of W 1,p

0 (Ω)\{0}. We conclude that ϕρ∗ and ∂B1 are
homotopy equivalent. Hence,

Hk

(
W 1,p

0 (Ω), ϕρ∗
)

= Hk

(
W 1,p

0 (Ω), ∂B1

)
for all k ≥ 0. (3.37)

Since the space W 1,p
0 (Ω) is infinite dimensional, it follows that ∂B1 is con-

tractible in itself. Then, from Granas and Dugundji [24, p. 389] we have

Hk

(
W 1,p

0 (Ω), ∂B1

)
= 0 for all k ≥ 0,

which in view of (3.37) gives

Hk

(
W 1,p

0 (Ω), ϕρ∗
)

= 0 for all k ≥ 0. (3.38)

Choosing ρ∗ < −M14
p even smaller if necessary, we conclude from (3.38) that

Ck(ϕ,∞) = 0 for all k ≥ 0

(see (2.6)). �

A similar reasoning leads to the following result.

Proposition 3.8. Assume H(a)1 and H(f)1, then

Ck(ϕ±,∞) = 0 for all k ≥ 0.
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Proof. We do the proof only for the functional ϕ+, the assertion for ϕ− can
be done similarly. Let ∂B+

1 := {u ∈ ∂B1 : u+ �= 0} and t > 0. As in the proof
of Proposition 3.7 we can show that for all u ∈ ∂B+

1 there holds

ϕ+(tu) → −∞ as t → +∞. (3.39)

Taking into account H(a)1(iv) and (3.34) yields, for all u ∈ ∂B+
1 ,

d

dt
ϕ+(tu) = 〈ϕ′

+(tu), u〉

=
1
t
〈ϕ′

+(tu), tu〉

=
1
t

[∫

Ω

(a(t∇u), t∇u)RN dx −
∫

Ω

f+(x, tu)tudx

]

≤ 1
t

[∫

Ω

pG(t∇u)dx + (c6 + M15)|Ω|N −
∫

Ω

pF (x, tu+)dx

]

≤ 1
t

[pϕ+(tu) + M16] (3.40)

where M16 = (c6 + M15)|Ω|N and M15 > 0. Regarding (3.39) and (3.40), we
conclude that

d

dt
ϕ+(tu) < 0 for all t > 0 sufficiently large.

As before, for every u ∈ ∂B+
1 , we find an unique ψ+(u) > 0 such that

ϕ+(ψ+(u)u) = ρ+∗ < −M16
p and the implicit function theorem implies that

ψ+ ∈ C(∂B+
1 ).

Let E+ = {u ∈ W 1,p
0 (Ω) : u+ �= 0} and set for all u ∈ E+

ψ̃+(u) =
1

‖u‖W 1,p
0 (Ω)

ψ+

(
u

‖u‖W 1,p
0 (Ω)

)

.

Obviously, ψ̃+ ∈ C(E+) and ϕ+(ψ̃+(u)u) = ρ+∗ . Moreover, if ϕ+(u) = ρ+∗ ,
then ψ̃+(u) = 1. Hence,

ψ̂+(u) :=

{
1 if ϕ+(u) ≤ ρ+∗ ,

ψ̃+(u) if ϕ+(u) > ρ+∗ ,
(3.41)

belongs to C(E+).
Consider the deformation h+ : [0, 1] × E+ → E+ defined by

h+(t, u) = (1 − t)u + tψ̂+(u)u.

We see at once that h+(0, u) = u, h+(1, u) ∈ (ϕ+)ρ+
∗ for all u ∈ E+, and

h+(t, ·)∣∣
(ϕ+)ρ

+∗ = id
∣
∣
(ϕ+)ρ

+∗ for all t ∈ [0, 1]

(cf. (3.41)). Consequently, (ϕ+)ρ+
∗ is a strong deformation retract of E+.
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Let us consider the deformation ĥ+ : [0, 1] × E+ → E+ defined by

ĥ+(t, u) = (1 − t)u + tu0,

where u0 ∈ E+ is fixed. Then, ĥ+(0, u) = u and ĥ+(1, u) = u0 which means
that idE+ is homotopic to the constant map u �→ u0. Thus, E+ is contractible
to itself (see Bredon [9, Proposition 14.5]) and from Granas and Dugundji [24,
p. 389], it follows

Hk

(
W 1,p

0 (Ω), E+

)
= 0 for all k ≥ 0.

Then we infer

Hk

(
W 1,p

0 (Ω), (ϕ+)ρ+
∗
)

= 0 for all k ≥ 0. (3.42)

As before, we choose ρ+∗ < −M16
p sufficiently small. Thus, (3.42) implies

Ck (ϕ+,∞) = 0 for all k ≥ 0.

This yields the assertion of the proposition. �

Recall that u0 ∈ int(C1
0 (Ω)+) and v0 ∈ − int(C1

0 (Ω)+) are the constant
sign solutions of (1.1) obtained in Proposition 2.7. We may assume that Kϕ =
{0, u0, v0}, otherwise we would find another nontrivial solution of (1.1) which
would belong to C1

0 (Ω) as a consequence of the nonlinear regularity theory
(see Ladyzhenskaya and Ural’tseva [26]) and Lieberman [27]) and therefore we
would have done.

Note that Kϕ = {0, u0, v0} ensures that Kϕ+ = {0, u0} and Kϕ− =
{0, v0}.

Proposition 3.9. Assume H(a)1 and H(f)1, then

Ck(ϕ+, u0) = Ck(ϕ−, v0) = δk,1Z for all k ≥ 0.

Proof. We only compute Ck(ϕ+, u0), the computation of Ck(ϕ−, v0) is done
in a similar way. Let ς1, ς2 ∈ R be two numbers such that

ς1 < 0 = ϕ+(0) < ς2 < m+ ≤ ϕ+(u0) (3.43)

(see (3.21) and (3.26)) and consider the following triple of sets

(ϕ+)ς1 ⊆ (ϕ+)ς2 ⊆ W 1,p
0 (Ω).

Concerning this triple of sets we study the corresponding long exact sequence
of homology groups which is given by

. . . −→ Hk

(
W 1,p

0 (Ω), (ϕ+)ς1
)

i∗−→ Hk

(
W 1,p

0 (Ω), (ϕ+)ς2
)

∂∗−→ Hk−1 ((ϕ+)ς2 , (ϕ+)ς1) −→ . . . ,
(3.44)
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where i∗ denotes the group homomorphism induced by the inclusion mapping
i : (ϕ+)ς1 → (ϕ+)ς2 and ∂∗ stands for the boundary homomorphism. Recall
that Kϕ+ = {0, u0} and thanks to (3.43) as well as Proposition 3.8 it follows

Hk

(
W 1,p

0 (Ω), (ϕ+)ς1
)

= Ck (ϕ+,∞) = 0 for all k ≥ 0. (3.45)

Furthermore, from Chang [11, p. 338], (3.43), and Proposition 3.5 we have

Hk

(
W 1,p

0 (Ω), (ϕ+)ς2
)

= Ck (ϕ+, u0) for all k ≥ 0 (3.46)

and

Hk−1 ((ϕ+)ς2 , (ϕ+)ς1) = Ck−1 (ϕ+, 0) = δk,1Z for all k ≥ 0. (3.47)

Taking into account (3.45) and (3.47) one observes that only the tail k = 1 in
(3.44) is nontrivial. Applying the rank theorem yields

rankH1

(
W 1,p

0 (Ω), (ϕ+)ς2
)

= rank(ker ∂∗) + rank(im ∂∗).

Then from (3.44)–(3.47) it follows

rankC1 (ϕ+, u0) = rank (ker ∂∗) + rank (im ∂∗)

= rank (im i∗) + rank (im ∂∗)

≤ 0 + 1. (3.48)

However, the proof of Proposition 3.6 has shown that u0 ∈ int(C1
0 (Ω)+) is a

critical point of ϕ+ of mountain pass type. Thus,

C1 (ϕ+, u0) �= 0. (3.49)

Combining (3.48) and (3.49) yields

Ck (ϕ+, u0) = δk,1Z for all k ≥ 0.

�

With the aid of Proposition 3.9 we are now in the position to compute
the critical groups of ϕ at u0 and v0.

Proposition 3.10. Assume H(a)1 and H(f)1, then

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ≥ 0.

Proof. As before, we only compute Ck(ϕ, u0), the other one works similarly.
We consider the homotopy h : [0, 1] × W 1,p

0 (Ω) → W 1,p
0 (Ω) defined by

h(t, u) = tϕ(u) + (1 − t)ϕ+(u).

Recall that Kϕ = {0, u0, v0}. We are going to prove the existence of a number
ρ > 0 such that u0 is the only critical point of h(t, ·) in

Bρ =
{

u ∈ W 1,p
0 (Ω) : ‖u − u0‖W 1,p

0 (Ω) < ρ
}
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for all t ∈ [0, 1]. We proceed by contradiction. If we assume that this assertion
is not true, then we find a sequence (tn, un)n≥1 ⊆ [0, 1] × W 1,p

0 (Ω) such that

tn → t, in [0, 1], un → u0 in W 1,p
0 (Ω), and h′

u(tn, un) = 0 for all n ≥ 1.
(3.50)

Relation (3.50) gives

〈A(un), v〉= tn

∫

Ω

f(x, un)vdx+(1 − tn)
∫

Ω

f+(x, un)vdx for all v∈W 1,p
0 (Ω),

which means that un solves the problem

−div a(∇un(x)) = tnf(x, un(x)) + (1 − tn)f+(x, un(x)) in Ω,

u = 0 on ∂Ω.
(3.51)

Because of (3.50), from Ladyzhenskaya and Ural’tseva [26, p. 286], there exists
M17 > 0 such that ‖un‖L∞(Ω) ≤ M17 for all n ≥ 1 and due to Lieberman [27,
p. 320] we find β ∈ (0, 1) and M18 > 0 such that

‖un‖C1,α
0 (Ω) ≤ M18 for all n ≥ 1.

Due to the compact embedding C1,α
0 (Ω) ↪→ C1

0 (Ω), we may assume that
un → u0 in C1

0 (Ω) for a subsequence if necessary. Recalling u0 ∈ int(C1
0 (Ω)+)

there exists a number n0 ≥ 1 such that (un)n≥n0 ⊆ int(C1
0 (Ω)+). Thus (3.51)

reduces to
−div a(∇un) = f(x, un) in Ω,

u = 0 on ∂Ω.

Hence, (un)n≥n0 is a sequence of distinct solutions of (1.1) which contradicts
the fact that Kϕ = {0, u0, v0}.

Therefore, we find a number ρ > 0 such that h′
u(t, u) �= 0 for all t ∈ [0, 1]

and all u ∈ Bρ(u0)\{u0}. Similar to the proof of Proposition 3.4 one could
verify that h(t, ·) fulfills the C-condition for every t ∈ [0, 1]. Thus, we can
invoke the homotopy invariance of critical groups to get

Ck(h(0, ·), u0) = Ck(h(1, ·), u0) for all k ≥ 0,

which is equivalent to

Ck(ϕ, u0) = Ck(ϕ+, u0) for all k ≥ 0.

Combining this with Proposition 3.9 implies that

Ck(ϕ, u0) = Ck(ϕ+, u0) = δk,1Z for all k ≥ 0.

Similarly, we show that

Ck(ϕ, v0) = δk,1Z for all k ≥ 0.

�

Now we are ready to produce a third nontrivial solution of problem (1.1).
We have the following multiplicity theorem.



52 N. S. Papageorgiou and P. Winkert Results. Math.

Theorem 3.11. Under hypotheses H(a)1 and H(f)1 problem (1.1) has at least
three nontrivial solutions

u0 ∈ int
(
C1

0 (Ω)+
)
, v0 ∈ − int

(
C1

0 (Ω)+
)

and y0 ∈ C1
0 (Ω).

Proof. The existence of the two constant-sign solutions of (1.1) follows directly
from Proposition 3.6, that is

u0 ∈ int
(
C1

0 (Ω)+
)
, v0 ∈ − int

(
C1

0 (Ω)+
)
.

Suppose that Kϕ = {0, u0, v0} and recall that

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ≥ 0 (3.52)

(see Proposition 3.10). Thanks to Proposition 3.5 we know that

Ck(ϕ, 0) = δk,0Z for all k ≥ 0. (3.53)

Finally, Proposition 3.7 implies

Ck(ϕ,∞) = 0 for all k ≥ 0. (3.54)

Combining (3.52)–(3.54) and the Morse relation with t = −1 (see (2.7)) yields

2(−1)1 + (−1)0 = 0,

which is a contradiction. Thus, we can find y0 ∈ Kϕ\{0, u0, v0} which means
that y0 is a third nontrivial solution of (1.1) and as before, the nonlinear
regularity theory guarantees that y0 ∈ C1

0 (Ω). That finishes the proof. �

Remark 3.12. The first multiplicity result (three-solutions-theorem) for su-
perlinear elliptic equations has been proved by Wang [40]. In that work p =
2, a(ξ) = ξ for all ξ ∈ R

N (hence the differential operator is the Laplacian,
semilinear equation) and f(x, ·) = f(·) (i.e., the nonlinearity is x-independent),
f ∈ C1(R), f ′(0) = 0 and it satisfies the Ambrosetti–Rabinowitz condition (see
(1.2), (1.3)). We point out that Theorem 3.11 extends significantly the mul-
tiplicity result of Wang [40]. Other multiplicity results for p-Laplacian equa-
tions with a superlinear nonlinearity satisfying more restrictive conditions than
H(f)1 were proved by Liu [28] and Sun [38]. For Neumann problems driven by
the p-Laplacian we refer to Aizicovici et al. [2].

4. Five Nontrivial Solutions

In this section we produce additional nontrivial solutions for problem (1.1)
by changing the geometry of the problem near the origin. Roughly speaking
we require that f(x, ·) exhibits an oscillatory behavior near zero. We also
suppose some stronger assumptions on the map a(·) which allows us to prove
the existence of five nontrivial solutions of (1.1) given with complete sign
information. The results in this section extend the recent work of Aizicovici
et al. [3].

The new hypotheses on the map a(·) are the following.
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H(a)2: a(ξ) = a0(‖ξ‖)ξ for all ξ ∈ R
N with a0(t) > 0 for all t > 0, hypotheses

H(a)2(i)–(iii) are the same as the corresponding hypotheses H(a)1(i)–
(iii) and

(iv) pG0(t) − t2a0(t) ≥ −c6 for all t > 0 and some c6 > 0;
(v) there exists q ∈ (1, p) such that t �→ G0(t

1
q ) is convex in (0,+∞),

lim sup
t→0+

qG0(t)
tq

< +∞,

and t2a0(t) − qG0(t) ≥ η̂tp for all t > 0 and some η̂ > 0.

Remark 4.1. The examples given in Example 2.6 still satisfy the new hypothe-
ses H(a)2. Note that hypothesis H(a)2(v) implies

G(ξ) ≤ c7(‖ξ‖q + ‖ξ‖p) for all ξ ∈ R
N , (4.1)

with some c7 > 0.

Furthermore, we suppose new hypotheses on the nonlinearity f : Ω×R →
R as follows.
H(f)2: f : Ω × R → R is a Carathéodory function such that f(x, 0) = 0 for

a.a. x ∈ Ω, hypotheses H(f)2(i)–(iii) are the same as the corresponding
hypotheses H(f)1(i)–(iii) and

(iv) there exist ζ ∈ (1, q) (q as in hypothesis H(a)2(v)) and δ > 0 such
that

ζF (x, s) ≥ f(x, s)s > 0 for a.a. x ∈ Ω and for all 0 < |s| ≤ δ

and

essinf
Ω

F (·,±δ) > 0;

(v) there exist real numbers ξ− < 0 < ξ+ such that

f(x, ξ+) ≤ η1 < 0 < η2 ≤ f(x, ξ−) for a.a. x ∈ Ω;

(vi) for every ρ > 0, there exists ξρ > 0 such that

s �→ f(x, s) + ξρ|s|p−2s

is nondecreasing on [−ρ, ρ] for a.a. x ∈ Ω.

Remark 4.2. Hypothesis H(f)2(iv) implies that F (x, s) ≥ M19|s|ζ for a.a. x ∈
Ω, for all |s| ≤ δ, and some M19 > 0. We also point out that f(x, ·) exhibits an
oscillatory behavior near zero which follows directly from hypothesis H(f)2(v).

Example 4.3. As before, we drop the x-dependence. The following function
satisfies hypotheses H(f)2.

f(s) =

{
|s|τ−2s − 2|s|p−2s if |s| ≤ 1,

|s|p−2s ln |s| − |s|q−2s if |s| > 1
with 1 < q, τ < p.

Note that this f does not satisfy the Ambrosetti–Rabinowitz condition.
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First we produce two nontrivial constant sign solutions.

Proposition 4.4. Let the hypotheses H(a)2 and H(f)2 be satisfied. Then problem
(1.1) has at least two nontrivial constant sign solutions u0 ∈ int(C1

0 (Ω)) and
v0 ∈ − int(C1

0 (Ω)) such that

ξ− < v0(x) ≤ 0 ≤ u0(x) < ξ+ for all x ∈ Ω.

Moreover, both solutions are local minimizers of the energy functional ϕ.

Proof. Let f̂+ : Ω × R → R be the truncation function defined by

f̂+(x, s) =

⎧
⎪⎨

⎪⎩

0 if s < 0
f(x, s) if 0 ≤ s ≤ ξ+

f(x, ξ+) if ξ+ < s

, (4.2)

which is known to be a Carathéodory function. We introduce the C1-functional
ϕ̂+ : W 1,p

0 (Ω) → R through

ϕ̂+(u) =
∫

Ω

G(∇u)dx −
∫

Ω

F̂+(x, u)dx

with F̂+(x, s) =
∫ s

0
f̂+(x, t)dt. It is clear that ϕ̂+ : W 1,p

0 (Ω) → R is coercive
(see Corollary 2.5, (4.2)) and sequentially weakly lower semicontinuous. Hence,
its global minimizer u0 ∈ W 1,p

0 (Ω) exists, that is

ϕ̂+(u0) = inf
{

ϕ̂+(u) : u ∈ W 1,p
0 (Ω)

}
= m̂+.

By virtue of hypothesis H(f)2(v) we know that we can find β > 0 and δ0 ∈
(0,min{δ, ξ+}) such that

G(ξ) ≤ β‖ξ‖q for all ‖ξ‖ ≤ δ0. (4.3)

Recall that hypothesis H(f)2(iv) implies

F (x, s) ≥ M20|s|ζ for a.a. x ∈ Ω and for all |s| ≤ δ0, (4.4)

with some M20 > 0. Since û1(q) ∈ int
(
C1

0 (Ω)+
)

we can choose t ∈ (0, 1)
sufficiently small such that tû1(q)(x) ∈ [0, δ0] for all x ∈ Ω. Taking into account
(4.3), (4.4) and ‖û1(q)‖q = 1, we obtain

ϕ̂+(tû1(q)) =
∫

Ω

G (∇tû1) dx −
∫

Ω

F̂+(x, tû1)dx

≤ βtq ‖∇(û1(q))‖q
q − M20t

ζ ‖û1(q)‖ζ
ζ

= βtqλ̂1(q) − M20t
ζ ‖û1(q)‖ζ

ζ . (4.5)

Since ζ < q, choosing t ∈ (0, 1) small enough, (4.5) gives

ϕ̂+(tû1(q)) < 0,

meaning

ϕ̂+(u0) = m̂+ < 0 = ϕ̂+(0).
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We conclude

u0 �= 0. (4.6)

On the other hand, since u0 is a critical point of ϕ̂+ there holds

〈Au0, v〉 =
〈
Nf̂+

(u0), v
〉

for all v ∈ W 1,p
0 (Ω). (4.7)

Choosing v = −u−
0 as test function in (4.7) and applying Lemma 2.4(c) as well

as the definition of the truncation (see (4.2)) yields
c1

p − 1

∥
∥∇u−

0

∥
∥p

p
≤ 0.

Hence,

u0 ≥ 0. (4.8)

Now, making use of hypothesis H(f)2(v) and taking (u0 − ξ+)+ ∈ W 1,p
0 (Ω) as

test function in (4.7) one gets
∫

Ω

(
a(∇u0),∇ (u0 − ξ+)+

)

RN
dx =

∫

Ω

f̂+(x, u0) (u0 − ξ+)+ dx

=
∫

Ω

f(x, ξ+) (u0 − ξ+)+ dx

≤ 0. (4.9)

From (4.9) it follows
∫

{u0>ξ+}
(a(∇u0) − a(∇ξ+),∇u0 − ∇ξ+)

RN dx ≤ 0,

and by virtue of Lemma 2.4(a),

|{u0 > ξ+}|N = 0.

Hence,

u0(x) ≤ ξ+ a.e. in Ω. (4.10)

Combining (4.6), (4.8) and (4.10) we have

0 ≤ u0(x) ≤ ξ+ a.e. in Ω and u0 �= 0.

Then, (4.7) becomes

〈Au0, v〉 = 〈Nf (u0), v〉 for all v ∈ W 1,p
0 (Ω),

meaning that
−div a(∇u0) = f(x, u0) in Ω,

u = 0 on ∂Ω.

The nonlinear regularity theory ensures that u0 ∈ C1
0 (Ω) (see Ladyzhenskaya

and Ural’tseva [26] and Lieberman [27, p. 320]).
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Thanks to hypothesis H(f)2(vi) we find for ρ = ξ+ a constant ξρ > 0 such
that

−div a(∇u0(x)) + ξρu0(x)p−1=f(x, u0(x))+ξρu0(x)p−1≥0 for a.a. x∈Ω.

Hence,

div a(∇u0(x)) ≤ ξρu0(x)p−1 for a.a. x ∈ Ω.

Due to Hypothesis H(a)2(iv) the strong maximum principle implies that u0 ∈
int(C1

0 (Ω)+) (see Pucci and Serrin [37, pp. 111 and 120]).
Now, let δ > 0 and set uδ = u0 + δ ∈ C1(Ω). Recall that u0(x) ≤ ξ+ for

all x ∈ Ω, by means of hypotheses H(f)2(v), (vi), we have

−div a(∇uδ(x)) + ξρuδ(x)p−1 ≤ −div a(∇u0(x)) + ξρu0(x)p−1 + o(δ)

= f(x, u0(x)) + ξρu0(x)p−1 + o(δ)

≤ f(x, ξ+) + ξρξ
p−1
+ + o(δ)

≤ η1 + ξρξ
p−1
+ + o(δ). (4.11)

Recall that η1 < 0 (see H(f)2(v)) and o(δ) → 0+ as δ → 0+. Then, for δ > 0
sufficiently small there holds η1 + o(δ) ≤ 0. Hence, from (4.11) we obtain

−div a(∇uδ(x)) + ξρuδ(x)p−1v ≤ −div a(∇ξ+) + ξρξ
p−1
+ .

Applying again Pucci and Serrin [37, p. 61] it follows

uδ(x) ≤ ξ+ for all x ∈ Ω,

consequently,

u(x) < ξ+ for all x ∈ Ω.

Therefore, we have

u0 ∈ int
C1

0 (Ω)
[0, ξ+].

Since ϕ|[0,ξ+] = ϕ̂+|[0,ξ+] we conclude that u0 is a local C1
0 (Ω)-minimizer of ϕ.

So, Proposition 2.7 implies that u0 is a local W 1,p
0 (Ω)-minimizer of ϕ.

For the nontrivial negative solution we introduce the following truncation
of the nonlinearity f(x, ·)

f̂−(x, s) =

⎧
⎪⎨

⎪⎩

f(x, ξ−) if s < ξ−
f(x, s) if ξ− ≤ s ≤ 0
0 if 0 < s

,

which is a Carathéodory function. Setting F̂−(x, s) =
∫ s

0
f̂−(x, t)dt we consider

the C1-functional ϕ̂− : W 1,p
0 (Ω) → R defined by

ϕ̂−(u) =
∫

Ω

G(∇u)dx −
∫

Ω

F̂−(x, u)dx.
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Working as above via the direct method we produce a solution v0 ∈ −
int

(
C1

0 (Ω)+
)

being a local minimizer of ϕ. �

Remark 4.5. A careful inspection of the proof above reveals that we only
needed hypotheses H(f)2(iv), (v), (vi), i.e., the asymptotic conditions at ±∞
(see H(f)2(ii), (iii)) are irrelevant. Moreover, the global growth condition H(f)2
(i) can be replaced by the following local one.

For every ρ > 0 there exists aρ ∈ L∞(Ω)+ such that

|f(x, s)| ≤ aρ(x) for a.a. x ∈ Ω and for all |s| ≤ ρ.

Using these two nontrivial constant sign solutions we can produce two
more precisely localized with respect to u0 and v0. Now we need the asymptotic
conditions at ±∞.

Proposition 4.6. Under the hypotheses H(a)2 and H(f)2 problem (1.1) pos-
sesses two more nontrivial constant sign solutions u1 ∈ int

(
C1

0 (Ω)+
)
and

v1 ∈ − int
(
C1

0 (Ω)+
)
satisfying

u0(x) ≤ u1(x) and v1(x) ≤ v0(x) for all x ∈ Ω

with u1 �= u0 and v1 �= v0.

Proof. We begin with the proof for the existence of u1. For u0 ∈ int
(
C1

0 (Ω)+
)

being the constant sign solution obtained in Proposition 4.4 we define the
truncation mapping e+ : Ω × R → R through

e+(x, s) =

{
f(x, u0(x)) if s < u0(x),
f(x, s) if u0(x) ≤ s,

(4.12)

which is again a Carathéodory function. Setting E+(x, s) =
∫ s

0
e+(x, t)dt we

introduce the C1-functional σ+ : W 1,p
0 (Ω) → R by

σ+(u) =
∫

Ω

G(∇u)dx −
∫

Ω

E+(x, u)dx.

First we note that σ+ fulfills the C-condition which can be shown as in the
proof of Proposition 3.4 with minor modifications by applying (4.12).

Claim: We may assume that u0 ∈ int
(
C1

0 (Ω)+
)

is a local minimizer of
the functional σ+.

Recalling u0(x) < ξ+ for all x ∈ Ω we introduce the subsequent Carath-
éodory truncation function

ê+(x, s) =

{
e+(x, s) if s ≤ ξ+

e+(x, ξ+) if s > ξ+
(4.13)

and consider the C1-functional σ̂+ : W 1,p
0 (Ω) → R

σ̂+(u) =
∫

Ω

G(∇u)dx −
∫

Ω

Ê+(x, u)dx
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with Ê+(x, s)=
∫ s

0
ê+(x, t)dt. Obviously, σ̂+ is coercive and sequentially weakly

lower semicontinuous which implies due to the Weierstrass theorem that there
is a global minimizer û0 ∈ W 1,p

0 (Ω) meaning

σ̂+(û0) = inf
{

σ̂+(u) : u ∈ W 1,p
0 (Ω)

}
.

In particular, this gives σ̂′
+(û0) = 0 and hence,

〈A(û0), v〉 =
〈
Nê+(û0), v

〉
for all v ∈ W 1,p

0 (Ω). (4.14)

Taking v = (u0 − û0)+ ∈ W 1,p
0 (Ω) in the last equation and using (4.12), (4.13)

we obtain
〈
A(û0), (u0 − û0)

+
〉

=
∫

Ω

ê+(x, û0)) (u0 − û0)
+

dx

=
∫

Ω

f(x, u0) (u0 − û0)
+

dx

=
〈
A(u0), (u0 − û0)

+
〉

.

It follows that
〈
A(u0) − A(û0), (u0 − û0)

+
〉

= 0,

meaning
∫

{u0>û0}
(a(∇u0) − a(∇û0),∇u0 − ∇û0)RN dx = 0.

Hence, |{u0 > û0}|N = 0, that is, u0 ≤ û0. Now, taking v = (û0 − ξ+)+

in (4.14), applying (4.12), (4.13), H(f)2(v), and recalling u0(x) < ξ+ for all
x ∈ Ω, we get

〈
A(û0), (û0 − ξ+)+

〉
=
∫

Ω

ê+(x, û0)) (û0 − ξ+)+ dx

=
∫

Ω

f(x, ξ+) (û0 − ξ+)+ dx

≤ 0,

which implies
∫

{û0>ξ+}
‖∇û0‖p

dx ≤ 0

(see Lemma 2.4(c)). As above we conclude that |{û0 > ξ+}|N = 0, i.e., û0 ≤
ξ+. Then, û0 ∈ [u0, ξ+] and Eq. (4.14) becomes

〈A(û0), v〉 = 〈Nf (û0), v〉 for all v ∈ W 1,p
0 (Ω),

which means that û0 solves our original problem (1.1). Applying again the
nonlinear regularity theory we obtain that û0 ∈ int

(
C1

0 (Ω)+
)

(see the proof
of Proposition 4.4). If û0 �= u0, then the assertion of the proposition is proved
and we are done.
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Let us suppose that û0 = u0. By means of the truncations in (4.12),
(4.13) we have

σ+

∣
∣
[0,ξ+]

= σ̂+

∣
∣
[0,ξ+]

.

Since û0 = u0 ∈ intC1
0 (Ω)[0, ξ+] we see that û0 = u0 is a local C1

0 (Ω)-minimizer
of σ+ and with regard to Proposition 2.7 it is also a local W 1,p

0 (Ω)-minimizer
of σ+. This proves the claim.

We may also assume that u0 is an isolated critical point of σ+, otherwise
we would find a sequence (un)n≥1 ⊆ W 1,p

0 (Ω) such that

un → u0 in W 1,p
0 (Ω) and σ′

+(un) = 0 for all n ≥ 1. (4.15)

It follows

A(un) = Ne+(un) for all n ≥ 1

meaning that

−div a(∇un(x)) = e+(x, un(x)) a.e. in Ω. (4.16)

Then, from (4.15), (4.16) and Ladyzhenskaya and Ural’tseva [26] we can find
M21 > 0 such that ‖un‖L∞(Ω) ≤ M21. Applying the regularity results of
Lieberman [27] we find γ ∈ (0, 1) and M22 > 0 such that

un ∈ C1,γ
0 (Ω) and ‖un‖C1,γ

0 (Ω) ≤ M22 for all n ≥ 1.

Exploiting the compact embedding of C1,γ(Ω) into C1
0 (Ω) and by virtue of

(4.15) one gets

un → u0, un ≥ u0 for all n ≥ 1.

That means we have proved the existence of a whole sequence (un)n≥1 ⊆
int

(
C1

0 (Ω)+
)

of distinct nontrivial positive solutions of (1.1). Hence, we are
done. Therefore, we may consider u0 as an isolated critical point of σ+.

Because of the claim there exists a number ρ ∈ (0, 1) such that

σ+(u0) < inf
{

σ+(u) : ‖u − u0‖W 1,p
0 (Ω) = ρ

}
=: η+

ρ (4.17)

(see Aizicovici et al. [1, Proof of Proposition 29]). Recall that σ+ satisfies the
C-condition. Thanks to hypothesis H(f)2(ii) we verify that if u ∈ int

(
C1

0 (Ω)+
)
,

then σ+(tu) → −∞ as t → +∞. These facts combined with (4.17) permit the
usage of the mountain pass theorem stated in Theorem 2.2. This provides the
existence of u1 ∈ W 1,p

0 (Ω) such that

u1 ∈ Kσ+ and η+
ρ ≤ e+(u1). (4.18)

With a view to (4.17) and (4.18) we see that u0 ≤ u1, u0 �= u1 and u1 ∈
int

(
C1

0 (Ω)+
)

solves problem (1.1).
The case of a second nontrivial negative solution v1 ∈ − int

(
C1

0 (Ω)+
)

with v1 ≤ v0 and v1 �= v0 can be shown using similar arguments. �
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Now we are interested to find a fifth solution of (1.1) being a sign-changing
one. In order to produce the nodal solution we will use some tools from Morse
theory. For this purpose we start by computing the critical groups at the origin
of the C1-energy functional ϕ : W 1,p

0 (Ω) → R
N defined by

ϕ(u) =
∫

Ω

G(∇u)dx −
∫

Ω

F (x, u)dx.

Our proof uses ideas from Moroz [31] in which G(ξ) = 1
2‖ξ‖2 for all ξ ∈ R

N

with more restrictive conditions on f : Ω × R → R and from Jiu and Su [25]
where G(ξ) = 1

p‖ξ‖p for all ξ ∈ R
N .

Proposition 4.7. Under the assumptions H(a)2 and H(f)2(i), (iv) there holds
Ck(ϕ, 0) = 0 for all k ≥ 0.

Proof. Note that from H(f)2(i) and (iv) we have

F (x, s) ≥ M23|s|ζ − M24|s|r for a.a. x ∈ Ω and for all s ∈ R (4.19)

with positive constants M23,M24. Recall that hypothesis H(a)2(v) implies

G(ξ) ≤ c7(‖ξ‖q + ‖ξ‖p) for all ξ ∈ R
N (4.20)

(see also (4.1)). Let u ∈ W 1,p
0 (Ω) and t > 0. Combining (4.19) and (4.20) gives

ϕ(tu) =
∫

Ω

G(∇(tu))dx −
∫

Ω

F (x, tu)dx

≤ c7t
q‖∇u‖q

q + c7t
p‖∇u‖p

p − M23t
ζ‖u‖ζ

ζ + M24t
r‖u‖r

r.

Since ζ < q < p < r there exists a small number t0 > 0 such that

ϕ(tu) < 0 for all 0 < t < t0.

Now let u ∈ W 1,p
0 (Ω) be such that ϕ(u) = 0. Taking into account H(a)2(v),

H(f)2(i), (iv), and the Sobolev embedding theorem it follows

d

dt
ϕ(tu)

∣
∣
∣
∣
t=1

= 〈ϕ′(tu), u〉
∣
∣
∣
∣
t=1

=
∫

Ω

(a(∇u),∇u)
RN dx −

∫

Ω

f(x, u)udx

− ζ

∫

Ω

G(∇u)dx +
∫

Ω

ζF (x, u)dx

≥ η̂‖∇u‖p
p +

∫

Ω

[ζF (x, u) − f(x, u)u] dx

≥ η̂‖u‖p

W 1,p
0 (Ω)

− M25‖u‖r
W 1,p

0 (Ω)
(4.21)

with some M25 > 0. Since p < r we can find ρ ∈ (0, 1) small enough such that

d

dt
ϕ(tu)

∣
∣
∣
∣
t=1

> 0 ∀u ∈ W 1,p
0 (Ω) with ϕ(u) = 0 and 0 < ‖u‖W 1,p

0 (Ω) ≤ ρ.

(4.22)
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Now, let u ∈ W 1,p
0 (Ω) with 0 < ‖u‖W 1,p

0 (Ω) ≤ ρ and ϕ(u) = 0. In the following
we are going to show that

ϕ(tu) ≤ 0 for all t ∈ [0, 1]. (4.23)

Arguing by contradiction, suppose that we can find a number t0 ∈ (0, 1) such
that ϕ(t0u) > 0. Since ϕ is continuous and ϕ(u) = 0 there exists t1 ∈ (t0, 1]
such that ϕ(t1u) = 0. Let t∗ = min{t ∈ [t0, 1] : ϕ(tu) = 0}. It is clear that
t∗ > t0 > 0 and

ϕ(tu) > 0 for all t ∈ [t0, t∗). (4.24)

Setting v = t∗u we have 0 < ‖v‖W 1,p
0 (Ω) ≤ ‖u‖W 1,p

0 (Ω) ≤ ρ and ϕ(v) = 0.
Then, (4.22) gives

d

dt
ϕ(tv)

∣
∣
∣
∣
t=1

> 0. (4.25)

Moreover, from (4.24) we obtain

ϕ(v) = ϕ(t∗u) = 0 < ϕ(tu) for all t ∈ [t0, t∗).

Hence,

d

dt
ϕ(tv)

∣
∣
∣
∣
t=1

= t∗
d

dt
ϕ(tu)

∣
∣
∣
∣
t=t∗

= t∗ lim
t→t−∗

ϕ(tu)
t − t∗

≤ 0. (4.26)

Comparing (4.25) and (4.26) we reach a contradiction. This proves (4.23).
By taking ρ ∈ (0, 1) even smaller if necessary we may assume that Kϕ ∩

Bρ = {0} where Bρ = {u ∈ W 1,p
0 (Ω) : ‖u‖W 1,p

0 (Ω) ≤ ρ}. Let h : [0, 1] × (ϕ0 ∩
Bρ) → ϕ0 ∩ Bρ be the deformation defined by

h(t, u) = (1 − t)u.

Thanks to (4.23) we verify that this deformation is well-defined and it implies
that ϕ0 ∩ Bρ is contractible in itself.

Fix u ∈ Bρ with ϕ(u) > 0. We show that there exists an unique t(u) ∈
(0, 1) such that

ϕ(t(u)u) = 0.

Since ϕ(u) > 0 and the continuity of t �→ ϕ(tu), (4.22) ensures the
existence of such a t(u) ∈ (0, 1). It remains to show its uniqueness. Arguing
by contradiction, suppose that for 0 < t∗1 = t(u)1 < t∗2 = t(u)2 < 1 we have
ϕ(t∗1u) = ϕ(t∗2u) = 0. Then, (4.23) implies

γ(t) = ϕ(tt∗2u) ≤ 0 for all t ∈ [0, 1].

Therefore t∗
1

t∗
2

∈ (0, 1) is a maximizer of γ and thus,

d

dt
γ(t)

∣
∣
∣
∣
t=

t∗
1

t∗
2

= 0,
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which implies that
t∗1
t∗2

d

dt
ϕ(tt∗2u)

∣
∣
∣
∣
t=

t∗
1

t∗
2

=
d

dt
ϕ(tt∗1u)

∣
∣
∣
∣
t=1

= 0.

But this is a contradiction to (4.22) and the uniqueness of t(u) ∈ (0, 1) is
proved.

This uniqueness implies that

ϕ(tu) < 0 if t ∈ (0, t(u)) and ϕ(tu) > 0 for all t ∈ (t(u), 1].

Let T1 : Bρ\{0} → (0, 1] be defined by

T1(u) =

{
1 if ϕ(u) ≤ 0,

t(u) if ϕ(u) > 0.

It is easy to check that T1 is continuous. Next, we consider a map T2 :
Bρ\{0} → (ϕ0 ∩ Bρ)\{0} defined by

T2(u) =

{
u if ϕ(u) ≤ 0,

T1(u)u if ϕ(u) > 0.

Obviously, T2 is a continuous function. We observe that

T2

∣
∣
∣
∣
(ϕ0∩Bρ)\{0}

= id
∣
∣
∣
∣
(ϕ0∩Bρ)\{0}

,

which proves that (ϕ0 ∩ Bρ)\{0} is a retract of Bρ\{0}. Note that Bρ\{0} is
contractible in itself. Therefore, the same is true for (ϕ0∩Bρ)\{0}. Previously,
we proved that ϕ0 ∩ Bρ is contractible in itself. From Granas and Dugundji
[24, p. 389] it follows that

Hk

(
ϕ0 ∩ Bρ,

(
ϕ0 ∩ Bρ

) \{0}) = 0 for all k ≥ 0.

Hence,

Ck(ϕ, 0) = 0 for all k ≥ 0.

(see Sect. 2). This completes the proof. �

Thanks to Proposition 4.7 we can now establish the existence of extremal
nontrivial constant sign solutions, that means, we will produce the smallest
nontrivial positive solution and the greatest nontrivial negative solution of
(1.1).

To this end, let S+ (resp. S−) be the set of all nontrivial positive (resp.
negative) solutions of problem (1.1). As in Filippakis et al. [18] we can show
that
• S+ is downward directed, that means, if u1, u2 ∈ S+, then there exists

u ∈ S+ such that u ≤ u1 and u ≤ u2.
• S− is upward directed, that means, if v1, v2 ∈ S−, then there exists

v ∈ S− such that v1 ≤ v and v2 ≤ v.
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By virtue of these lattice properties of S+ and S− we see that for the
purpose of producing extremal nontrivial constant sign solutions and since
S+ ⊆ int

(
C1

0 (Ω)+
)
,S− ⊆ − int

(
C1

0 (Ω)+
)
, without any loss of generality, we

may assume that there exists M26 > 0 such that

‖u‖C(Ω) ≤ M26 for all u ∈ S+ and ‖v‖C(Ω) ≤ M26 for all v ∈ S−.

(4.27)

Note that from hypotheses H(f)2(i) and (iv) we find positive constants
a1, a2 such that

f(x, s)s ≥ a1|s|ζ − a2|s|r for a.a. x ∈ Ω and for all s ∈ R. (4.28)

This unilateral growth estimate leads to the following auxiliary Dirichlet
problem

−div a(∇u(x)) = a1|u|ζ−2u − a2|u|r−2u in Ω,

u = 0 on ∂Ω.
(4.29)

We are going to prove the uniqueness of constant sign solutions of (4.29).

Proposition 4.8. If hypotheses H(a)2 hold, then problem (4.29) admits a unique
nontrivial positive solution u∗ ∈ int

(
C1

0 (Ω)+
)
and since (4.29) is odd, v∗ =

−u∗ ∈ int
(
C1

0 (Ω)+
)
is the unique nontrivial negative solution of (4.29).

Proof. Let ψ+ : W 1,p
0 (Ω) → R be the C1-functional defined by

ψ+(u) =
∫

Ω

G(∇u)dx − a1

ζ

∥
∥u+

∥
∥ζ

ζ
+

a2

r̂

∥
∥u+

∥
∥r

r
.

Because of Corollary 2.5 and due to ζ < p < r we observe that ψ+ is coercive
and in addition sequentially weakly lower semicontinuous. Then we find u∗ ∈
W 1,p

0 (Ω) such that

ψ+(u∗) = inf
[
ψ+(u) : u ∈ W 1,p

0 (Ω)
]

< 0 = ψ+(0),

since ζ < p < r (see the proof of Proposition 4.4). Hence, u∗ �= 0. Moreover,
as u∗ is the global minimizer of ψ+ it holds (ψ+)′(u∗) = 0 which means

A(u∗) = a1

(
u+

∗
)ζ−1 − a2

(
u+

∗
)r−1

. (4.30)

Acting on (4.30) with −u−
∗ ∈ W 1,p

0 (Ω) and using Lemma 2.4(c), we see that
u∗ ≥ 0 and as before u∗ �= 0. Then, Eq. (4.30) becomes

A(u∗) = a1u
ζ−1
∗ − a2u

r−1
∗

and u∗ turns out to be a nontrivial positive solution of (4.29). As before,
the nonlinear regularity theory (see [26,27]) implies that u∗ ∈ C1

0 (Ω) and the
nonlinear maximum principle of Pucci and Serrin [37, pp. 111 and 120] yields
that u∗ ∈ int

(
C1

0 (Ω)+
)
.
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We will complete the proof of the proposition if we prove the uniqueness
of this solution u∗. To this end, let Ψ+ : L1(Ω) → R ∪ {∞} be the integral
functional defined by

Ψ+(u) =

{∫
Ω

G
(
∇u

1
q

)
dx if u ≥ 0, u

1
q ∈ W 1,p

0 (Ω),

+∞ otherwise.

Take u1, u2 ∈ dom Ψ+ and let u = (tu1 + (1 − t)u2)
1
q for t ∈ [0, 1]. Applying

Lemma 1 of Dı́az and Saá [15] results in

‖∇u(x)‖ ≤
(
t
∥
∥
∥∇u1(x)

1
q

∥
∥
∥

q

+ (1 − t)
∥
∥
∥∇u2(x)

1
q

∥
∥
∥

q) 1
q

a.e. in Ω.

As G0 is increasing and by means of H(a)2(v) we conclude

G0 (‖∇u(x)‖)

≤ G0

((
t
∥
∥
∥∇u1(x)

1
q

∥
∥
∥

q

+ (1 − t)
∥
∥
∥∇u2(x)

1
q

∥
∥
∥

q) 1
q

)

≤ tG0

(∥
∥
∥∇u1(x)

1
q

∥
∥
∥
)

+ (1 − t)G0

(∥
∥
∥∇u2(x)

1
q

∥
∥
∥
)

a.e. in Ω.

Note that by definition G(ξ) = G0(‖ξ‖) for all ξ ∈ R
N . Hence

G(∇u(x)) ≤ tG
(
∇u1(x)

1
q

)
+ (1 − t)G

(
∇u2(x)

1
q

)
a.e. in Ω,

which proves that Ψ+ is convex.
Now we take two nontrivial positive solutions v, w ∈ W 1,p

0 (Ω) of (4.29).
As mentioned before we know that v, w belong to int

(
C1

0 (Ω)+
)
. Therefore,

v, w ∈ dom Ψ+. For t ∈ (0, 1) sufficiently small and h ∈ C1
0 (Ω) we have v +

th, w + th ∈ dom Ψ+. Hence, Ψ+ is Gateaux differentiable at v and w in the
direction h. Furthermore, the chain rule yields

Ψ ′
+ (vq) (h) =

1
q

∫

Ω

−div a(∇v)
vq−1

hdx, (4.31)

Ψ ′
+ (wq) (h) =

1
q

∫

Ω

−div a(∇w)
wq−1

hdx. (4.32)

Note that Ψ ′
+ is monotone since Ψ+ is convex. Then, from (4.31) and (4.32),

we derive

0 ≤ 〈
Ψ ′
+ (vq) − Ψ ′

+ (wq) , vq − wq
〉

L1(Ω)

=
1
q

∫

Ω

(−div a(∇v)
vq−1

+
div a(∇w)

wq−1

)

(vq − wq) dx

=
1
q

∫

Ω

(
a1v

ζ−1 − a2v
r−1

vq−1
− a1w

ζ−1 − a2w
r−1

wq−1

)

(vq − wq) dx

=
a1

q

∫

Ω

(
1

vq−ζ
− 1

wq−ζ

)

(vq − wq) dx +
a2

q

∫

Ω

(
wr−q − vr−q

)
(vq − wq) dx.
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Since s �→ 1
sq−ζ − sr−q is strictly decreasing in (0,∞) we conclude that v =

w and thus, u∗ ∈ int
(
C1

0 (Ω)+
)

is the unique nontrivial positive solution of
(4.29). Obviously, v∗ = −u∗ ∈ − int

(
C1

0 (Ω)+
)

is the unique nontrivial negative
solution of (4.29). �

Proposition 4.9. If hypotheses H(a)2 and H(f)2 hold, then u∗ ≤ u for all
u ∈ S+ and v ≤ v∗ for all v ∈ S− with u∗, v∗ being the nontrivial unique
constant sign solutions of problem (4.29) obtained in Proposition 4.8.

Proof. Let u ∈ S+ and consider the Carathéodory function

ϑ+(x, s) =

⎧
⎪⎨

⎪⎩

0 if s < 0,

a1s
ζ−1 − a2s

r−1 if 0 ≤ s ≤ u(x),
a1u(x)ζ−1 − a2u(x)r−1 if u(x) < s.

(4.33)

We consider the C1-functional Φ+ : W 1,p
0 (Ω) → R defined by

Φ+(u) =
∫

Ω

G(∇u)dx −
∫

Ω

Θ+(x, u)dx

with Θ+(x, s) =
∫ s

0
ϑ+(x, t)dt. By means of the truncation it is clear that Φ+

is coercive and since it is also sequentially weakly lower semicontinuous there
exists an element û∗ ∈ W 1,p

0 (Ω) such that

Φ+(û∗) = inf
[
Φ+(u) : u ∈ W 1,p

0 (Ω)
]

< 0 = Φ+(0).

As before since ζ < p < r (see the proof of Proposition 4.4). Hence, û∗ �= 0.
Since û∗ is a critical point of Φ+, we have

A (û∗) = Nϑ+ (û∗) . (4.34)

Acting in (4.34) with −û−
∗ ∈ W 1,p

0 (Ω) we derive by applying Lemma 2.4(c)
that û ≥ 0. On the other hand, acting with (û∗ − u)+ ∈ W 1,p

0 (Ω) in (4.34),
there holds thanks to (4.33), (4.28) and u ∈ S+,

〈
A (û∗) , (û∗ − u)+

〉
=
∫

Ω

ϑ+ (x, û∗) (û∗ − u)+ dx

=
∫

Ω

(
a1u

ζ−1 − a2u
r−1

)
(û∗ − u)+ dx

≤
∫

Ω

f(x, u) (û∗ − u)+ dx

=
〈
A (u) , (û∗ − u)+

〉
.

This gives
∫

{û∗>u}
(a (∇û∗) − a (∇u) ,∇û∗ − ∇u)

RN dx ≤ 0.
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Since a is strictly monotone (see Lemma 2.4(a)) we obtain |{û∗ > u}|N = 0.
To sum up, we have

0 �= û∗ ∈ [0, u] =
{

v ∈ W 1,p
0 (Ω) : 0 ≤ v(x) ≤ u(x) a.e. in Ω

}
.

By definition of the truncation in (4.33) it follows ϑ+(x, û∗) = a1û
ζ−1
∗ −a2û

r−1
∗ .

Therefore, û∗ solves the auxiliary problem (4.29) but Proposition 4.8 proved
the uniqueness of constant sign solutions of (4.29). We deduce that û∗ = u∗ ∈
int

(
C1

0 (Ω)+
)

and u∗ ≤ u. Since u ∈ S+ was arbitrary we deduce that

u∗ ≤ u for all u ∈ S+.

Similarly, we prove that v ≤ v∗ for all v ∈ S−. �

Now we are ready to produce extremal nontrivial constant sign solutions
of our original problem (1.1).

Proposition 4.10. Under the assumption H(a)2 and H(f)2 problem (1.1) pos-
sesses a smallest positive solution u+ ∈ int

(
C1

0 (Ω)+
)
and a greatest negative

solution v− ∈ − int
(
C1

0 (Ω)+
)
.

Proof. Let C ⊆ S+ be a chain, i.e., a totally ordered subset of S+. Then there
is a sequence (un)n≥1 ⊆ S+ such that

inf C = inf
n≥1

un.

(see Dunford and Schwartz [17, p. 336]). Since un ∈ S+ we have

A(un) = Nf (un) for all n ≥ 1. (4.35)

Therefore, thanks to (4.27), H(f)2(i) and Lemma 2.4, we observe that (un)n≥1

⊆ W 1,p
0 (Ω) is bounded and we may assume that

un ⇀ u in W 1,p
0 (Ω) and un → u in Lp(Ω). (4.36)

Acting on (4.35) with un − u ∈ W 1,p
0 (Ω) and making use of (4.36) yields

lim
n→∞ 〈A(un), un − u〉 = 0.

Therefore, the (S+)-property of A (see Proposition 2.8) gives un → u in
W 1,p

0 (Ω). Passing to the limit in (4.35) we get

A(u) = Nf (u). (4.37)

Taking into account Proposition 4.9 provides u∗ ≤ un for all n ≥ 1 which
implies u∗ ≤ u and with regard to (4.37) u ∈ S+. Furthermore, we have
u = inf C . Since C was arbitrarily chosen in S+ the Kuratowski–Zorn Lemma
ensures that S+ has a minimal element u+ ∈ S+. Since S+ is downward
directed we conclude that u+ ∈ int

(
C1

0 (Ω)+
)

is the smallest nontrivial positive
solution of (1.1).
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Working with S− instead of S+ and applying again the Kuratowski–
Zorn Lemma, we can show that v− ∈ − int

(
C1

0 (Ω)+
)

is the greatest nontrivial
negative solution of (1.1). Recall that S− is upward directed. �

Having these extremal nontrivial constant sign solutions, we are now in
the position to produce a nodal (sign changing) solution of problem (1.1).

Proposition 4.11. Let H(a)2 and H(f)2 be satisfied. Then problem (1.1) has
a nodal solution y0 ∈ [v−, u+] ∩ C1

0 (Ω).

Proof. By reason of Proposition 4.10 we know that u+ ∈ int
(
C1

0 (Ω)+
)

and
v− ∈ − int

(
C1

0 (Ω)+
)

are the extremal nontrivial constant sign solutions of
(1.1). With the aid of these extremal solutions we introduce the cut-off function
f0 : Ω × R → R

f0(x, s) =

⎧
⎪⎨

⎪⎩

f (x, v−(x)) if s < v−(x)
f (x, s) if v−(x) ≤ s ≤ u+(x)
f (x, u+(x)) if u+(x) < s

, (4.38)

which is clearly a Carathéodory function. For F0(x, s) =
∫ s

0
f0(x, t)dt we define

the C1-functional ϕ0 : W 1,p
0 (Ω) → R by

ϕ0(u) =
∫

Ω

G (∇u) dx −
∫

Ω

F0(x, u)dx.

For f±
0 (x, s) = f0(x,±s±) we also consider the functionals ϕ±

0 : W 1,p
0 (Ω) → R

ϕ±
0 (u) =

∫

Ω

G (∇u) dx −
∫

Ω

F±
0 (x, u)dx

with F±
0 (x, s) =

∫ s

0
f±
0 (x, t)dt.

As in the proof of Proposition 4.9 it can be easily shown that

Kϕ0 ⊆ [v−, u+], Kϕ+
0

⊆ [0, u+] , Kϕ−
0

⊆ [v−, 0] .

Then, the extremality properties of u+ ∈ int
(
C1

0 (Ω)+
)

and v− ∈ −
int

(
C1

0 (Ω)+
)

imply that

Kϕ0 ⊆ [v−, u+], Kϕ+
0

= {0, u+} , Kϕ−
0

= {v−, 0} . (4.39)

Claim: u+ ∈ int
(
C1

0 (Ω)+
)

and v− ∈ − int
(
C1

0 (Ω)+
)

are local minimizers
of ϕ0.

First note that ϕ+
0 is coercive (see (4.38)) and sequentially weakly lower

semicontinuous. Then there exists û ∈ W 1,p
0 (Ω) such that

ϕ+
0 (û) = inf

{
ϕ+
0 (u) : u ∈ W 1,p

0 (Ω)
}

.

Similar to the proof of Proposition 4.4 (see (4.5)) we have ϕ+
0 (û) < 0 = ϕ+

0 (0),
hence û �= 0. Then, (4.39) implies û = u+ ∈ int

(
C1

0 (Ω)+
)
. Since ϕ0

∣
∣
C1

0 (Ω)+
=

ϕ+
0

∣
∣
C1

0 (Ω)+
we deduce that u+ ∈ int

(
C1

0 (Ω)+
)

is a local C1
0 (Ω)-minimizer of ϕ0
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and thanks to Proposition 2.7 it follows that u+ is a local W 1,p
0 (Ω)-minimizer

of ϕ0. The assertion for v− ∈ − int
(
C1

0 (Ω)+
)

can be shown similarly, using
ϕ−
0 instead of ϕ+

0 . This proves the claim.
We may assume, without loss of generality, that ϕ0(v−) ≤ ϕ0(u+). By

virtue of the claim, we find a number ρ ∈ (0, 1) such that ‖v−−u+‖W 1,p
0 (Ω) > ρ

and

ϕ0 (v−) ≤ ϕ0 (u+) < inf
[
ϕ0(u) : ‖u − u+‖W 1,p

0 (Ω) = ρ
]

= η0. (4.40)

(see Aizicovici et al. [1, proof of Proposition 29]). Because of the definition
of the truncation in (4.38) it is clear that ϕ0 is coercive and so it satisfies
the C-condition. This fact in conjunction with (4.40) permits the usage of
the mountain pass theorem stated in Theorem 2.2. Therefore, we find y0 ∈
W 1,p

0 (Ω) such that

y0 ∈ Kϕ0 ⊆ [v−, u+] and η0 ≤ ϕ0(y0) (4.41)

(see also (4.39)). From (4.41), (4.38), and (4.40) it follows that y0 is a solution
of (1.1) and y0 �∈ {v−, u+}. The nonlinear regularity theory implies that y0 ∈
C1

0 (Ω).
Since y0 is a critical point of ϕ0 of mountain pass type, we have

C1(ϕ0, y0) �= 0. (4.42)

On the other side Proposition 4.7 amounts

Ck(ϕ, 0) = 0 for all k ≥ 0.

Moreover, (4.38) implies ϕ
∣
∣
[v−,u+]

= ϕ0

∣
∣
[v−,u+]

and since u+ ∈ int
(
C1

0 (Ω)+
)
,

v− ∈ − int
(
C1

0 (Ω)+
)

combined with the homotopy invariance of critical groups
(cf. the proof of Proposition 3.10) we infer that

Ck(ϕ0, 0) = Ck(ϕ, 0) = 0 for all k ≥ 0. (4.43)

Comparing (4.42) and (4.43) we obtain that y0 ∈ [v−, u+] ∩ C1
0 (Ω)\{0}. Due

to the extremality of u+ and v− the solution y0 must be nodal. �

Summarizing this section we can state the following multiplicity theorem
for problem (1.1).

Theorem 4.12. If hypotheses H(a)2 and H(f)2 hold, then problem (1.1) has
at least four constant sign solutions

• u0, u1 ∈ int
(
C1

0 (Ω)+
)
, u0 ≤ u1, u0 �= u1

• v0, v1 ∈ − int
(
C1

0 (Ω)+
)
, v1 ≤ v0, v1 �= v0

and at least one sign-changing (nodal) solution

y0 ∈ [v0, u0] ∩ C1
0 (Ω).

Proof. The result follows from the Propositions 4.4, 4.6, and 4.11. �
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In the next section we will improve Theorem 4.12 for a particular case
of problem (1.1) and with stronger regularity conditions on the nonlinearity
f(x, ·). It will be shown the existence of a second nodal solution for a total of
six nontrivial solutions given with complete sign information.

5. (p, 2)-Equation

In this section we deal with a particular case of problem (1.1). Namely, we
assume that

a(ξ) = ‖ξ‖p−2ξ + ξ for all ξ ∈ R
N with 2 ≤ p < ∞.

In this case the differential operator becomes the (p, 2)-Laplacian, that is

div a(∇u) = Δpu + Δu for all u ∈ W 1,p
0 (Ω).

This differential operator arises in problems of quantum physics in con-
nection with Derick’s model [14] for the existence of solitons (see Benci et al.
[8]).

Therefore, the problem under consideration is the following:

−Δpu − Δu = f(x, u) in Ω,

u = 0 on ∂Ω.
(5.1)

Under stronger regularity conditions on the nonlinearity f(x, ·) we will
show that problem (5.1) has a second nodal solution for a total of six nontrivial
solutions (two positive, two negative, and two nodal).

We need to strengthen our hypotheses on the mapping f : Ω ×R → R in
the following way.

H(f)3 f : Ω ×R → R is a measurable function such that f(x, 0) = 0, f(x, ·) ∈
C1(R) for a.a. x ∈ Ω, hypotheses H(f)3(ii), (iii), (v), (vi) are the same
as the corresponding hypotheses H(f)2(ii), (iii), (v), (vi) and
(i) |f ′

s(x, s)| ≤ a(x)(1 + |s|r−2) for a.a. x ∈ Ω, for all s ∈ R, with
a ∈ L∞(Ω)+, and 2 < r < p∗;

(iv) f ′
s(x, 0) = lims→0

f(x,s)
s uniformly for a.a. x ∈ Ω,

f ′
s(x, 0) ∈

[
λ̂m(2), λ̂m+1(2)

]
a.e. in Ω with m ≥ 2,

and f ′
s(·, 0) �= λ̂m(2), f ′

s(·, 0) �= λ̂m+1(2).

Remark 5.1. Note that the asymptotic behavior of f(x, ·) at ±∞ remains the
same. The situation has changed near zero (see H(f)3(iv)) since the concave
term has power equal to q = 2 (i.e. ζ = q = 2). This changes the computation
of the critical groups of the energy functional ϕ at the origin.
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Example 5.2. The following function satisfies hypotheses H(f)3 (the x-depen-
dence is dropped again):

f(x) =

{
λs − cs2 if |s| ≤ 1
βs ln |s| − (λ − c)|s| 1

2 if |s| > 1

with λ ∈ (λ̂m(2), λ̂m+1(2)) for some m ≥ 2, β > 4λ, and c = 2β−λ
5 > 0.

We start with the computation of the critical groups at the origin.

Proposition 5.3. Let hypotheses H(f)3 be satisfied. Then

Ck(ϕ, 0) = δk,dm
Z for all k ≥ 0

with dm = dim⊕m
i=1E(λ̂i(2)) ≥ 2.

Proof. Consider the C2-functional γ : W 1,p
0 (Ω) → R defined by

γ(u) =
1
p
‖∇u‖p

p +
1
2
‖∇u‖22 − 1

2

∫

Ω

f ′
u(x, 0)u2dx.

By virtue of hypothesis H(f)3(iv), given ε > 0, there exists δ = δ(ε) ∈ (0, 1)
such that

∣
∣
∣
∣
f(x, s)

s
− f ′

s(x, 0)
∣
∣
∣
∣ ≤ ε for a.a. x ∈ Ω and for all 0 < |s| ≤ δ,

which implies that
∣
∣
∣
∣F (x, s) − 1

2
f ′

s(x, 0)s2
∣
∣
∣
∣ ≤ ε for a.a. x ∈ Ω and for all 0 < |s| ≤ δ.

Therefore, we find ρ ∈ (0, 1) such that

‖ϕ − γ‖
C1

0(B
C
ρ ) ≤ ε,

where B
C

ρ = {u ∈ C1
0 (Ω) : ‖u‖C1

0 (Ω) ≤ ρ}.
Choosing ε > 0 sufficiently small gives

Ck

(
ϕ
∣
∣
C1

0 (Ω)
, 0
)

= Ck

(
γ
∣
∣
C1

0 (Ω)
, 0
)

for all k ≥ 0

(see Chang [11, p. 336]) and since C1
0 (Ω) is dense in W 1,p

0 (Ω) it follows

Ck(ϕ, 0) = Ck(γ, 0) for all k ≥ 0 (5.2)

(see Palais [33]). Moreover, due to Cingolani and Vannella [13, Theorem 1],
one has

Ck(γ, 0) = δk,dm
Z for all k ≥ 0,

which, because of (5.2), results in

Ck(ϕ, 0) = δk,dm
Z for all k ≥ 0.

�
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A careful inspection of the proofs in the previous section reveals that the
results remain valid although we have a different geometry near zero (since ζ =
q = 2 in the notation of Sect. 4). In this case, by means of hypotheses H(f)3(i),
(iv), we know that for given ε > 0 there is a number M27 = M27(ε) > 0
such that

f(x, s)s ≥ (f ′
s(x, 0) − ε) s2 − M27|s|r for a.a. x ∈ Ω and for all s ∈ R.

This unilateral growth estimate leads to the following auxiliary Dirichlet
problem

−Δpu − Δu = (f ′
u(x, 0) − ε) u2 − M27|u|r−2u(x) in Ω,

u = 0 on ∂Ω.
(5.3)

Choosing ε ∈ (0, λ̂m(2)−λ̂m+1(2)) we can show that problem (5.3) admits
a unique nontrivial positive solution u∗ ∈ int

(
C1

0 (Ω)+
)

and, by the oddness of
(5.3), we have that v∗ = −u∗ ∈ − int

(
C1

0 (Ω)+
)

is the unique nontrivial nega-
tive solution of (5.3). The proof can be done as the proof of Proposition 4.8.
Therefore, the arguments of Sect. 4 apply and we produce five nontrivial
solutions

• u0, u1 ∈ int
(
C1

0 (Ω)+
)
, u0 ≤ u1, u0 �= u1;

• v0, v1 ∈ − int
(
C1

0 (Ω)+
)
, v1 ≤ v0, v1 �= v0;

• y0 ∈ [v0, u0] ∩ C1
0 (Ω) nodal.

Using these five solutions and Morse theory, we can produce a sixth non-
trivial solution being nodal.

Theorem 5.4. Let hypotheses H(f)3 be satisfied. Then problem (5.1) has at
least six nontrivial solutions

• u0, u1 ∈ int
(
C1

0 (Ω)+
)
, u0 ≤ u1, u0 �= u1;

• v0, v1 ∈ − int
(
C1

0 (Ω)+
)
, v1 ≤ v0, v1 �= v0;

• y0, y1 ∈ int
C1

0 (Ω)
[v0, u0] nodal.

Proof. As we already remarked the conclusion of Theorem 4.12 remains valid
in the present setting and thus we already have five nontrivial solutions

• u0, u1 ∈ int
(
C1

0 (Ω)+
)
, u0 ≤ u1, u0 �= u1;

• v0, v1 ∈ − int
(
C1

0 (Ω)+
)
, v1 ≤ v0, v1 �= v0;

• y0 ∈ [v0, u0] ∩ C1
0 (Ω) nodal.

Without loss of generality we may assume that both, u0 and v0, are
extremal nontrivial constant sign solutions, i.e., u0 = u+ and v0 = v− in the
notation of Proposition 4.10. We have

−Δpu0 − Δu0 − f(x, u0) = 0 = −Δpy0 − Δy0 − f(x, y0) for a.a. x ∈ Ω,
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and y0 ≤ u0. As a(ξ) = ‖ξ‖p−2ξ+ξ for all ξ ∈ R
N we see that a ∈ C1(RN ,RN ).

Hence,

∇a(ξ) = ‖ξ‖p−2

(

I + (p − 2)
ξ ⊗ ξ

‖ξ‖2
)

+ I for all ξ ∈ R
N\{0},

implying

(∇a(ξ)y, y)
RN ≥ ‖y‖2 for all ξ, y ∈ R

N .

This fact along with hypothesis H(f)3(iv) permits the usage of the tangency
principle of Pucci and Serrin [37, p. 35] to obtain y0(x) < u0(x) for all x ∈ Ω.
Similarly, one can prove v0(x) < y0(x) for all x ∈ Ω.

Let ρ = max{‖u0‖C(Ω), ‖v0‖C(Ω)} and let ξρ be as postulated in hypoth-
esis H(f)3(vi). For ξ > ξρ we infer

− Δpu0(x) − Δu0(x) + ξu0(x)p−1

= f(x, u0(x)) + ξu0(x)p−1

= f(x, u0(x)) + ξρu0(x)p−1 + (ξ − ξρ) u0(x)p−1

≥ f(x, y0(x)) + ξρ|y0(x)|p−2y0(x) + (ξ − ξρ) u0(x)p−1

> f(x, y0(x)) + ξρ|y0(x)|p−2y0(x) + (ξ − ξρ) |y0(x)|p−2y0(x)

= −Δpy0(x) − Δy0(x) + ξ|y0(x)|p−2y0(x) a.e. in Ω.

Since u0 ∈ int
(
C1

0 (Ω)+
)

and y0 ∈ C1
0 (Ω) we may apply the strong comparison

principle of Papageorgiou and Smyrlis [36, Proposition 3] and deduce that u0−
y0 ∈ int

(
C1

0 (Ω)+
)
. In a similar fashion we show that y0 − v0 ∈ int

(
C1

0 (Ω)+
)
.

Therefore, we have proved that

y0 ∈ int
C1

0 (Ω)
[v0, u0]. (5.4)

Let ϕ0 ∈ C2−0(W 1,p
0 (Ω)) be the functional introduced in the proof of

Proposition 4.11 by truncating the nonlinearity f(x, ·) at {v0(x), u0(x)}. Recall
that

C1(ϕ0, y0) �= 0 (5.5)

(see (4.42)). The homotopy invariance of critical groups along with (5.4) gives

Ck(ϕ0, y0) = Ck(ϕ, y0) for all k ≥ 0, (5.6)

(see the proof of Proposition 3.10) which implies, due to (5.5),

C1(ϕ, y0) �= 0.

Since ϕ ∈ C2(W 1,p
0 (Ω)), from Papageorgiou and Smyrlis [36, the proof of

Proposition 12, Claim 2], we infer that

Ck(ϕ, y0) = δk,1Z for all k ≥ 0,
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which implies, because of (5.6),

Ck(ϕ0, y0) = δk,1Z for all k ≥ 0. (5.7)

Recall that u0 ∈ int
(
C1

0 (Ω)+
)

and v0 ∈ − int
(
C1

0 (Ω)+
)

are local minimizers
of ϕ0 (see the claim in the proof of Proposition 4.11). Hence, we get

Ck(ϕ0, u0) = Ck(ϕ0, v0) = δk,0Z for all k ≥ 0. (5.8)

Since ϕ0|[v0,u0] = ϕ|[v0,u0], u0 ∈ int
(
C1

0 (Ω)+
)
, v0 ∈ − int

(
C1

0 (Ω)+
)
, Proposi-

tion 5.3, and the homotopy invariance of critical groups we see that

Ck(ϕ0, 0) = δk,dm
Z for all k ≥ 0. (5.9)

Finally, by means of the truncation defined in (4.38), it is easy to see that ϕ0

is coercive. Therefore

Ck (ϕ0,∞) = δk,0Z for all k ≥ 0. (5.10)

Now suppose that Kϕ0 = {0, u0, v0, y0}. Taking into account the Morse relation
given in (2.7) by setting t = −1 combined with (5.7)–(5.10) results in

(−1)dm + 2(−1)0 + (−1)1 = (−1)0,

which gives the contradiction (−1)dm = 0. Hence, we can find another y1 ∈ Kϕ0

satisfying y1 �∈ {0, u0, v0, y0}. Due to (4.39) we know that Kϕ0 ⊆ [u0, v0] and
as we supposed that u0, v0 are the extremal solutions of (5.1), it follows that y1
is a nodal solution of (5.1) distinct from y0. Finally, the usage of the nonlinear
regularity theory implies that y1 ∈ C1

0 (Ω). Moreover, similar to y0 (see (5.4)),
we can show that

y1 ∈ int
C1

0 (Ω)
[v0, u0].

The proof is complete. �

6. Nonlinear Eigenvalue Problem

In this section we deal with the following nonlinear eigenvalue problem
−div a(∇u) = λf(x, u) in Ω,

u = 0 on ∂Ω.
(Pλ)

As before, the nonlinearity f : Ω × R → R is supposed to be a
Carathéodory function which exhibits (p − 1)-superlinear growth near ±∞
without satisfying the Ambrosetti–Rabinowitz condition. Our aim is to prove
that problem (Pλ) admits at least two nontrivial solutions provided λ > 0 is
sufficiently small. Moreover, one of these solutions vanishes as λ → 0+ and the
other one blows up as λ → 0+, both in the Sobolev norm ‖ · ‖W 1,p

0 (Ω).
We suppose the following conditions on the nonlinearity f : Ω × R → R.

H(f)4: f : Ω × R → R is a Carathéodory function satisfying f(x, 0) = 0,
f(x, s) ≥ 0 for a.a. x ∈ Ω and for all s ≥ 0 such that
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(i) |f(x, s)| ≤ a(x)(1 + |s|r−1) for a.a. x ∈ Ω, for all s ≥ 0, with
a ∈ L∞(Ω)+, and p < r < p∗;

(ii) if F (x, s) =
∫ s

0
f(x, t)dt, then

lim
s→+∞

F (x, s)
sp

= +∞ uniformly for a.a. x ∈ Ω;

(iii) there exist τ ∈ ((r − p)max{N
p , 1}, p∗) and β0 > 0 such that

lim inf
s→+∞

f(x, s)s − pF (x, s)
sτ

≥ β0 uniformly for a.a. x ∈ Ω;

(iv) there exist ζ ∈ (1, q) (q as in hypothesis H(a)2(v)) and δ > 0 such
that

ζF (x, s) ≥ f(x, s)s > 0 for a.a. x ∈ Ω, for all 0 < s ≤ δ,

and

essinf
Ω

F (·, δ) > 0;

(v) for every ρ > 0 there exists ξρ > 0 such that

s �→ f(x, s) + ξρs
p−1

is nondecreasing on [0, ρ] for a.a. x ∈ Ω.

Remark 6.1. Since we are looking for positive solutions and as the hypotheses
above concern the positive semiaxis R+ = [0,∞), without loss of generality,
we may assume that f(x, s) = 0 for a.a. x ∈ Ω and for all s ≤ 0.

We have the following existence theorem for problem (Pλ).

Theorem 6.2. Assume H(a)2 and H(f)4. Then there exists λ∗ > 0 such that
problem (Pλ) possesses at least two solutions uλ, vλ ∈ int

(
C1

0 (Ω)+
)
for all

λ ∈ (0, λ∗) satisfying

‖uλ‖W 1,p
0 (Ω) → ∞ and ‖vλ‖W 1,p

0 (Ω) → 0 as λ → 0+.

Proof. Let ϕλ : W 1,p
0 (Ω) → R be the C1-energy functional of problem (Pλ)

defined by

ϕλ(u) =
∫

Ω

G(∇u)dx − λ

∫

Ω

F (x, u)dx

with F (x, s) =
∫ s

0
f(x, t)dt. By means of H(f)4(i) and (iv) we obtain the

estimate

|F (x, s)| ≤ M28

q

(
s+

)q +
M29

r

(
s+

)r for a.a. x ∈ Ω and for all s ∈ R (6.1)
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with positive constants M28 and M29. Taking into account Corollary 2.5, (6.1),
and the Sobolev embedding theorem gives

ϕλ(u) =
∫

Ω

G(∇u)dx − λ

∫

Ω

F (x, u)dx

≥ c1
p(p − 1)

‖u‖p

W 1,p
0 (Ω)

− λ

[
M28

q
‖u‖q

q +
M29

r
‖u‖r

r

]

≥ c1
p(p − 1)

‖u‖p

W 1,p
0 (Ω)

− λ
[
M30‖u‖q

W 1,p
0 (Ω)

+ M31‖u‖r
W 1,p

0 (Ω)

]
(6.2)

for all u ∈ W 1,p
0 (Ω) and with positive constants M30,M31 both independent

of λ > 0. Now let α ∈ (0, 1
r−p ) and suppose that ‖u‖W 1,p

0 (Ω) = λ−α. Then,
(6.2) reads as

ϕλ(u) ≥ c1
p(p − 1)

λ−αp − M30λ
1−αq − M31λ

1−αr =: ξ(λ). (6.3)

Since α < 1
r−p there holds −αp < 1 − αr and recall q < p < r. Therefore,

ξ(λ) → +∞ as λ → 0+. (6.4)

Hence, there exists a number λ∗
1 > 0 such that ξ(λ) > 0 for all λ ∈ (0, λ∗

1).
Then, from (6.3) one has

ϕλ(u) ≥ ξ(λ) > 0 = ϕλ(0) (6.5)

for all u ∈ W 1,p
0 (Ω) with ‖u‖W 1,p

0 (Ω) = λ−α and λ ∈ (0, λ∗
1).

As before, thanks to hypotheses H(f)4(i),(ii), we derive

ϕλ(tû1(p)) → −∞ as t → +∞ for all λ > 0. (6.6)

Finally, Proposition 3.4 ensures that ϕλ satisfies the C-condition. This fact
along with (6.5) and (6.6) allow us to apply the mountain pass theorem stated
in Theorem 2.2. This yields an element uλ ∈ W 1,p

0 (Ω) such that

uλ ∈ Kϕλ
\{0} and ξ(λ) ≤ ϕλ(uλ). (6.7)

Hence, uλ is a nontrivial solution of (Pλ). As before, the nonlinear regular-
ity theory (see [26,27]) and the nonlinear maximum principle (see [37] and
hypothesis H(f)4(v)) imply that uλ ∈ int

(
C1

0 (Ω)+
)
. Now, by applying (6.7),

Corollary 2.5 and hypothesis H(f)4(i), it follows

ξ(λ) ≤ ϕλ(uλ) ≤ M32

(
1 + ‖uλ‖r

W 1,p
0 (Ω)

)
(6.8)

for some M32 > 0. The statement in (6.8) along with (6.4) yields that

‖uλ‖W 1,p
0 (Ω) → ∞ as λ → 0+.

Now let us prove the second assertion of the theorem. To this end, recall
that we have again

ϕλ(u) ≥ c1
p(p − 1)

‖u‖p

W 1,p
0 (Ω)

− λ
[
M30‖u‖q

W 1,p
0 (Ω)

+ M31‖u‖r
W 1,p

0 (Ω)

]
(6.9)
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for all u ∈ W 1,p
0 (Ω) (see (6.2)). Let β ∈ (0, 1

p ) and set ‖u‖W 1,p
0 (Ω) = λβ . Then,

(6.9) becomes

ϕλ(u) ≥ c1
p(p − 1)

λβp − M30λ
1+βq − M31λ

1+βr =: ω(λ).

Since

ω(λ) = λ

[
c1

p(p − 1)
λβp−1 − M24λ

βq − M25λ
βr

]

and βp − 1 < 0, we see that

ω(λ) → +∞ as λ → 0+.

Therefore we find a number λ∗
2 > 0 such that

ϕλ(u) ≥ ω(λ) > 0 = ϕλ(0) (6.10)

for all u ∈ W 1,p
0 (Ω) with ‖u‖W 1,p

0 (Ω) = λβ and λ ∈ (0, λ∗
2).

Let Bλ = {u ∈ W 1,p
0 (Ω) : ‖u‖W 1,p

0 (Ω) ≤ λβ}. By means of hypotheses
H(a)2(v) and H(f)4(iv) we obtain, for t ∈ (0, 1) sufficiently small, that

ϕλ (tû1(q)) < 0

(cf. the proof of Proposition 4.4). Therefore

inf
∂Bλ

ϕλ ≥ ω(λ) > 0 and inf
Bλ

ϕλ < 0.

Set dλ := inf∂Bλ
ϕλ − infBλ

ϕλ and let ε ∈ (0, dλ). Taking into account the
Ekeland variational principle (see, for example, Gasiński and Papageorgiou
[20, p. 579]) there exists uε ∈ Bλ such that

ϕλ (uε) ≤ inf
Bλ

ϕλ + ε (6.11)

and

ϕλ (uε) ≤ ϕλ(y) + ε ‖y − uε‖W 1,p
0 (Ω) for all y ∈ Bλ. (6.12)

Since ε < dλ, we infer from (6.11) that

ϕλ (uε) < inf
∂Bλ

ϕλ,

thus uε ∈ Bλ = {u ∈ W 1,p
0 (Ω) : ‖u‖W 1,p

0 (Ω) < λβ}. This ensures that uε + th ∈
Bλ for every h ∈ W 1,p

0 (Ω) and for all t > 0 sufficiently small. Taking y = uε+th

in (6.12) for h ∈ W 1,p
0 (Ω) with such a small t > 0, then dividing by t > 0 and

letting t → 0+, we obtain

−ε‖h‖W 1,p
0 (Ω) ≤ 〈ϕ′

λ(uε), h〉 .

Since h ∈ W 1,p
0 (Ω) is arbitrary the last inequality gives ‖ϕ′

λ(uε)‖∗ ≤ ε.
Now, let εn → 0+ and let un = uεn

. Hence,
(
1 + ‖un‖W 1,p

0 (Ω)

)
ϕ′

λ (un) → 0
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which in view of Proposition 3.4 implies that un → vλ in W 1,p
0 (Ω) for some

vλ ∈ W 1,p
0 (Ω).

Passing to the limit in (6.11) as n → ∞ we have

ϕλ (vλ) = inf
Bλ

ϕλ < 0 = ϕλ(0)

which means that vλ �= 0 being a local minimizer of ϕλ. Therefore, vλ is a
solution of (Pλ) and vλ ∈ int

(
C1

0 (Ω)+
)

(as before). Moreover, since uλ is a
critical point of ϕλ of mountain pass type, it follows that vλ �= uλ. Finally,
note that

‖vλ‖W 1,p
0 (Ω) < λβ .

Thus, ‖vλ‖W 1,p
0 (Ω) → 0 as λ → 0+. Letting λ∗ = min {λ∗

1, λ
∗
2} we have the

conclusion of our theorem. �
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