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a b s t r a c t

This paper deals with boundedness results for weak solutions of the equation

− div A(x, u, ∇u) = B(x, u, ∇u) inΩ ,

A(x, u, ∇u) · ν = C(x, u) on ∂Ω ,
(P)

where the functions A : Ω × R × RN → RN , B : Ω × R × RN → R, and
C : ∂Ω×R → R are Carathéodory functions satisfying certain p-structure conditions
that have critical growth even on the boundary. Based on a modified version of the
Moser iteration we are able to prove that every weak solution of (P) is bounded up
to the boundary. Under some additional assumptions on the functions A and C this
leads directly to regularity for weak solutions of (P).

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω ⊂ RN , N > 1, be a bounded domain with a Lipschitz boundary ∂Ω . In this paper, we study the
boundedness of weak solutions of the problem

− div A(x, u, ∇u) = B(x, u, ∇u) in Ω ,

A(x, u, ∇u) · ν = C(x, u) on ∂Ω ,
(1.1)

where ν(x) denotes the outer unit normal of Ω at x ∈ ∂Ω , and A, B and C satisfy suitable p-structure
conditions, see hypotheses (H) in Section 3.

The main goal of this paper is to present a priori bounds for weak solutions of Eq. (1.1), where we allow
critical growth on the data in the domain and on the boundary. The main idea in the proof is based on a
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modified version of Moser’s iteration which in turn is based on the books of Drábek–Kufner–Nicolosi [2] and
Struwe [17].

In some sense, (1.1) is a generalization of the classical differential equation from the Yamabe problem

− ∆u = f(x)u + h(x)u
N+2
N−2 , (1.2)

where f and h are smooth functions. It is well known that there is no stable regularity theory for solutions
of Eq. (1.2), which reflects the difficulty of the Yamabe problem. Nevertheless, it was proven by Trudinger [18]
that any solution W 1,2(Ω) of (1.2) is in fact smooth, but the regularity estimates depend on the solution
itself. In this spirit, our main result, Theorem 3.1, can thus be seen as a generalization of Trudinger’s work.

The main novelty of our paper consists in the generality of the assumptions needed to establish the
boundedness of weak solutions to (1.1). In particular, the assumptions on the nonlinearity C are rather general
allowing critical growth on the boundary. To the best of our knowledge, such a treatment with critical growth
even on the boundary has not been published before. Another novelty is a result of independent interest
which shows that a Sobolev function, which is bounded in the domain, is also bounded on the boundary,
see Proposition 2.4.

Recently, Papageorgiou–Rădulescu [14, Proposition 2.8] studied a priori bounds for problems of the form

− div a(∇u) = f0(x, u) in Ω ,

a(∇u) · ν = −β|u|p−2
u on ∂Ω ,

(1.3)

where 1 < p < ∞, the function a : RN → RN is continuous and strictly monotone satisfying certain
regularity and growth conditions, the Carathéodory function f0 : Ω × R → R has critical growth with
respect to the second variable and β ∈ C1,α(∂Ω) with α ∈ (0, 1) and β ≥ 0. Note that our setting is more
general than those in [14] since we have weaker conditions on a and f0 and our boundary term is able to have
critical growth. The proof of their result is mainly based on a treatment of Garćıa Azorero–Peral Alonso
[4], who studied Eq. (1.3) with the p-Laplacian and homogeneous Dirichlet condition, namely

−∆pu = λ|u|q−2
u + |u|p

∗−2
u in Ω ,

u = 0 on ∂Ω ,

with 1 < q < p < N , λ > 0 and the Sobolev critical exponent p∗, see Section 2 for its definition. Both works
use a different technique than the Moser iteration applied in our paper. For the semilinear case we mention
the work of Wang [19].

An alternative approach was published by Guedda–Véron [8] who studied quasilinear problems for positive
solutions given by

−∆pu = a(x)up−1 + up∗−1 in Ω ,

u > 0 in Ω ,

u = 0 on ∂Ω ,

with a ∈ L∞(Ω). In all these works the assumptions on the functions are stronger than ours and no critical
growth on the boundary is allowed.

Finally, we mention some works concerning boundedness and regularity results of weak solutions to
quasilinear equations of the form (1.1) that have subcritical growth, see, for example, Fan–Zhao [3], Gasiński–
Papageorgiou [6], [5, pp. 737–738], Hu–Papageorgiou [9], Lê [10], Motreanu–Motreanu–Papageorgiou [12],
Pucci–Servadei [16], Winkert [20–22], Winkert–Zacher [24,23,25] and the references therein. The methods
used in these papers are mainly based on Moser’s iteration or De Giorgi’s iteration technique and no critical
growth occurs.
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The paper is organized as follows. In Section 2 we present the main preliminaries including a multiplicative
inequality estimating the boundary integrals and a result how L∞(Ω)-boundedness implies L∞(∂Ω)-
boundedness. In Section 3 we state our main result and the proof is divided into several parts. First we
prove that every weak solution belongs to Lq(Ω) for any q < ∞, then we show its belonging to Lq(∂Ω)
for any finite q. In the second part of the proof we consider the uniform boundedness and show that a
weak solution belongs to L∞(Ω) and L∞(∂Ω), respectively. Finally, as an important application, we give
general conditions on the functions A and C when a solution lies in C1,β(Ω) for some β ∈ (0, 1) based on
the regularity results of Lieberman [11].

2. Preliminaries

Let r be a number such that 1 ≤ r < ∞. We denote by Lr(Ω), Lr
(
Ω ;RN

)
and W 1,r(Ω) the usual

Lebesgue and Sobolev spaces equipped with the norms ∥ · ∥r and ∥ · ∥1,r given by

∥u∥r =
(∫

Ω

|u|rdx

) 1
r

, ∥∇u∥r =
(∫

Ω

|∇u|rdx

) 1
r

∥u∥1,r =
(∫

Ω

|∇u|rdx +
∫
Ω

|u|rdx

) 1
r

.

For r = ∞ we recall that the norm of L∞(Ω) is given by

∥u∥∞ = ess sup
Ω

|u|.

On the boundary ∂Ω , we use the (N − 1)-dimensional Hausdorff (surface) measure denoted by σ. Then, in
a natural way we can define the Lebesgue spaces Ls(∂Ω) with 1 ≤ s ≤ ∞ and the norms ∥ · ∥s,∂Ω which are
given by

∥u∥s,∂Ω =
(∫

∂Ω

|u|sdσ

) 1
s

(1 ≤ s < ∞), ∥u∥∞,∂Ω = ess sup
∂Ω

|u|.

It is well known that there exists a unique linear continuous map γ : W 1,p(Ω) → Lp∗(∂Ω) known as the
trace map such that γ(u) = u

⏐⏐
∂Ω

for all u ∈ W 1,p(Ω) ∩ C(Ω), where p∗ is the critical exponent on the
boundary given by

p∗ =

⎧⎨⎩
(N − 1)p

N − p
if p < N,

any q ∈ (1, ∞) if p ≥ N.
(2.1)

For the sake of notational simplicity, we drop the use of the trace map γ. It is understood that all restrictions
of the Sobolev functions u ∈ W 1,p(Ω) on the boundary ∂Ω are defined in the sense of traces.

Furthermore, the Sobolev embedding theorem guarantees the existence of a linear, continuous map
i : W 1,p(Ω) → Lp∗(Ω) with the critical exponent in the domain given by

p∗ =

⎧⎨⎩
Np

N − p
if p < N,

any q ∈ (1, ∞) if p ≥ N.
(2.2)

We refer to Adams [1] as a reference for the embeddings above.
The norm of RN is denoted by | · | and · stands for the inner product in RN . For s ∈ R, we set

s± = max{±s, 0} and for u ∈ W 1,p(Ω) we define u±(·) = u(·)±. It is well known that

u± ∈ W 1,p(Ω), |u| = u+ + u−, u = u+ − u−.

By | · | we denote the Lebesgue measure on RN .
The following proposition will be useful in our treatment and was proven in Winkert [22, Proposition 2.1]
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Proposition 2.1. Let Ω ⊂ RN , N > 1, be a bounded domain with Lipschitz boundary ∂Ω , let 1 < p < ∞,
and let q̂ be such that p ≤ q̂ < p∗ with the critical exponent stated in (2.1). Then, for every ε > 0, there exist
constants c̃1 > 0 and c̃2 > 0 such that

∥u∥p
q̂,∂Ω ≤ ε∥u∥p

1,p + c̃1ε−c̃2∥u∥p
p for all u ∈ W 1,p(Ω).

The next proposition is a standard argument in the application of the Moser iteration, see for example
Drábek–Kufner–Nicolosi [2].

Proposition 2.2. Let Ω ⊂ RN , N > 1, be a bounded domain with Lipschitz boundary ∂Ω . Let u ∈ Lp(Ω)
with u ≥ 0 and 1 < p < ∞ such that

∥u∥αn ≤ C (2.3)

with a constant C > 0 and a sequence (αn) ⊆ R+ with αn → ∞ as n → ∞. Then, u ∈ L∞(Ω).

Proof. Let us suppose that u ̸∈ L∞(Ω). Then there exist a number η > 0 and a set A of positive measure
in Ω such that u(x) ≥ C + η for x ∈ A. Then it follows

∥u∥αn ≥
(∫

A

uαndx

) 1
αn

≥ (C + η) |A|
1

αn .

Passing to the limit inferior in the inequality above gives

lim inf
n→∞

∥u∥αn ≥ C + η,

which is a contradiction to (2.3). Hence, u ∈ L∞(Ω). □

Remark 2.3. It is clear that the statement in Proposition 2.2 remains true if we replace the domain Ω

by its boundary ∂Ω .

Finally, we state a result that the boundedness of a Sobolev function in W 1,p(Ω) implies the boundedness
on the boundary.

Proposition 2.4. Let Ω ⊂ RN , N > 1, be a bounded domain with Lipschitz boundary ∂Ω and let
1 < p < ∞. If u ∈ W 1,p(Ω) ∩ L∞(Ω), then u ∈ L∞(∂Ω).

Proof. By the Sobolev embedding we have

∥v∥p∗,∂Ω ≤ c∂Ω∥v∥1,p for all v ∈ W 1,p(Ω)

with the critical exponent p∗ as in (2.1). Let κ > 1 and take v = uκ in the inequality above. Note that
v ∈ W 1,p(Ω) since u ∈ W 1,p(Ω) ∩ L∞(Ω). This gives

∥u∥κp∗,∂Ω ≤ c
1
κ
∂Ω

[(∫
Ω

|∇uκ|pdx

) 1
κp

+
(∫

Ω

|uκ|pdx

) 1
κp
]

≤ c
1
κ
∂Ω

[
κ

1
κ ∥u∥1− 1

κ∞ ∥∇u∥
1
κ
p + ∥u∥∞|Ω |

1
κp

]
.

Letting κ → ∞, by applying Proposition 2.2 and Remark 2.3, we derive

∥u∥∞,∂Ω ≤ 2∥u∥∞. □
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3. A priori bounds via Moser iteration

In this section we state and prove our main result. First, we give the structure conditions on the functions
involved in problem (1.1).

(H) The functions A : Ω × R × RN → RN , B : Ω × R × RN → R, and C : ∂Ω × R → R are Carathéodory
functions satisfying the following structure conditions:

(H1) |A(x, s, ξ)| ≤ a1|ξ|p−1 + a2|s|q1
p−1

p + a3, for a.a. x ∈ Ω ,

(H2) A(x, s, ξ) · ξ ≥ a4|ξ|p − a5|s|q1 − a6, for a.a. x ∈ Ω ,

(H3) |B(x, s, ξ)| ≤ b1|ξ|p
q1−1

q1 + b2|s|q1−1 + b3, for a.a. x ∈ Ω ,

(H4) |C(x, s)| ≤ c1|s|q2−1 + c2, for a.a. x ∈ ∂Ω ,

for all s ∈ R, for all ξ ∈ RN , with positive constants ai, bj , ck (i ∈ {1, . . . , 6}, j ∈ {1, 2, 3}, k ∈ {1, 2})
and fixed numbers p, q1, q2 such that

1 < p < ∞, p ≤ q1 ≤ p∗, p ≤ q2 ≤ p∗

with the critical exponents stated in (2.2) and (2.1).

A function u ∈ W 1,p(Ω) is said to be a weak solution of Eq. (1.1) if∫
Ω

A(x, u, ∇u) · ∇φdx =
∫
Ω

B(x, u, ∇u)φdx +
∫

∂Ω

C(x, u)φdσ (3.1)

holds for all test functions φ ∈ W 1,p(Ω).
By means of the embeddings i : W 1,p(Ω) → Lp∗(Ω) and γ : W 1,p(Ω) → Lp∗(∂Ω) we see that the

definition of a weak solution is well-defined and all integrals in (3.1) are finite for u, φ ∈ W 1,p(Ω).
Now we can formulate the main result of our paper.

Theorem 3.1. Let Ω ⊂ RN , N > 1, be a bounded domain with Lipschitz boundary ∂Ω and let the
hypotheses (H) be satisfied. Then, every weak solution u ∈ W 1,p(Ω) of problem (1.1) belongs to Lr(Ω) for
every r < ∞. Moreover, u ∈ L∞(Ω), that is, ∥u∥∞ ≤ M , where M is a constant which depends on the given
data and on u.

Proof. Let u ∈ W 1,p(Ω) be a weak solution of problem (1.1). Since u = u+ − u− we can suppose, without
any loss of generality, that u ≥ 0. Furthermore, we only prove the case when q1 = p∗ and q2 = p∗. The other
cases were already obtained in [21, Theorem 4.1] and [22, Theorem 3.1]. Moreover, we will denote positive
constants with Mi and if the constant depends on the parameter κ we write Mi(κ) for i = 1, 2, . . ..

Let h > 0 and set uh = min{u, h}. Then we choose φ = uuκp
h with κ > 0 as test function in (3.1). Note

that ∇φ = ∇uuκp
h + uκpuκp−1

h ∇uh. This gives∫
Ω

A(x, u, ∇u) · ∇uuκp
h dx + κp

∫
Ω

A(x, u, ∇u) · ∇uhuκp−1
h udx

=
∫
Ω

B(x, u, ∇u)uuκp
h dx +

∫
∂Ω

C(x, u)uuκp
h dσ.

(3.2)

Applying (H2) to the first term of the left-hand side of (3.2) yields∫
Ω

A(x, u, ∇u) · ∇uuκp
h dx

≥
∫
Ω

[
a4|∇u|p − a5up∗

− a6

]
uκp

h dx

≥ a4

∫
Ω

|∇u|p uκp
h dx − (a5 + a6)

∫
Ω

up∗
uκp

h dx − a6|Ω |,

(3.3)
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respectively to the second term on the left-hand side

κp

∫
Ω

A(x, u, ∇u) · ∇uhuκp−1
h udx

= κp

∫
{x∈Ω :u(x)≤h}

A(x, u, ∇u) · ∇uuκp
h dx

≥ κp

∫
{x∈Ω :u(x)≤h}

[
a4|∇u|p − a5up∗

− a6

]
uκp

h dx

≥ a4κp

∫
{x∈Ω : u(x)≤h}

|∇u|p uκp
h dx − κp(a5 + a6)

∫
Ω

up∗
uκp

h dx − κpa6|Ω |.

(3.4)

By means of (H3) combined with Young’s inequality with ε1 > 0, the first term on the right-hand side of
(3.2) can be estimated through∫

Ω

B(x, u, ∇u)uuκp
h dx

≤ b1

∫
Ω

ε
p∗−1

p∗
1 |∇u|p

p∗−1
p∗ u

κp
p∗−1

p∗
h ε

− p∗−1
p∗

1 u
κp

(
1− p∗−1

p∗

)
h udx

+ (b2 + b3)
∫
Ω

up∗
uκp

h dx + b3|Ω |

≤ ε1b1

∫
Ω

|∇u|puκp
h dx +

(
b1ε

−(p∗−1)
1 + b2 + b3

)∫
Ω

up∗
uκp

h dx + b3|Ω |.

(3.5)

Finally, the boundary term can be estimated via (H4). This leads to∫
∂Ω

C(x, u)uuκp
h dσ ≤

∫
∂Ω

(
c1up∗−1 + c2

)
uuκp

h dσ

≤ (c1 + c2)
∫

∂Ω

up∗uκp
h dσ + c2|∂Ω |.

(3.6)

We now combine (3.2)–(3.6) and choose ε1 = a4
2b1

to obtain

a4

(
1
2

∫
Ω

|∇u|puκp
h dx + κp

∫
{x∈Ω : u(x)≤h}

|∇u|puκp
h dx

)
≤
(

(κp + 1)(a5 + a6) + b1ε
−(p∗−1)
1 + b2 + b3

)∫
Ω

up∗
uκp

h dx

+ (c1 + c2)
∫

∂Ω

up∗uκp
h dσ + ((κp + 1)a6 + b3)|Ω | + c2|∂Ω |.

(3.7)

Observe that

1
2

∫
Ω

|∇u|puκp
h dx + κp

∫
{x∈Ω : u(x)≤h}

|∇u|puκp
h dx

= 1
2

∫
{x∈Ω : u(x)>h}

|∇u|puκp
h dx +

(
κp + 1

2

)∫
{x∈Ω : u(x)≤h}

|∇u|puκp
h dx

≥ κp + 1
2(κ + 1)p

∫
{x∈Ω : u(x)>h}

|∇u|puκp
h dx + κp + 1

2

∫
{x∈Ω : u(x)≤h}

|∇u|puκp
h dx

≥ κp + 1
2(κ + 1)p

∫
Ω

|∇ (uuκ
h) |pdx
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invoking Bernoulli’s inequality (κ + 1)p ≥ κp + 1. From (3.7) it follows

a4
κp + 1

2(κ + 1)p

∫
Ω

|∇ (uuκ
h)|p dx

≤
(

(κp + 1)(a5 + a6) + b1ε
−(p∗−1)
1 + b2 + b3

)∫
Ω

up∗
uκp

h dx

+ (c1 + c2)
∫

∂Ω

up∗uκp
h dσ + ((κp + 1)a6 + b3) |Ω | + c2|∂Ω |.

(3.8)

Dividing by a4, summarizing the constants and adding on both sides of (3.8) the nonnegative term
κp+1

(κ+1)p ∥uuκ
h∥p

p gives

κp + 1
(κ + 1)p

∥uuκ
h∥p

1,p

≤ κp + 1
(κ + 1)p

∥uuκ
h∥p

p + M1(κp + 1)
∫
Ω

up∗
uκp

h dx + M2

∫
∂Ω

up∗uκp
h dσ + M3κ.

(3.9)

Part I: u ∈ Lr(Ω) for any finite r

Let us now estimate the terms on the right-hand side involving the critical exponents. We set a := up∗−p

and b := up∗−p. Moreover, let L > 0 and G > 0. Then, by using Hölder’s inequality and the Sobolev
embeddings for p∗ and p∗, see Section 2, we get∫

Ω

up∗
uκp

h dx

=
∫

{x∈Ω : a(x)≤L}
aupuκp

h dx +
∫

{x∈Ω : a(x)>L}
aupuκp

h dx

≤ L

∫
{x∈Ω : a(x)≤L}

upuκp
h dx

+
(∫

{x∈Ω : a(x)>L}
a

p∗
p∗−p dx

) p∗−p
p∗ (∫

Ω

up∗
uκp∗

h dx

) p
p∗

≤ L∥uuκ
h∥p

p +
(∫

{x∈Ω : a(x)>L}
a

p∗
p∗−p dx

) p∗−p
p∗

cp
Ω∥uuκ

h∥p
1,p

(3.10)

and ∫
∂Ω

up∗uκp
h dσ

=
∫

{x∈∂Ω : b(x)≤G}
bupuκp

h dσ +
∫

{x∈∂Ω : b(x)>G}
bupuκp

h dσ

≤ G

∫
{x∈∂Ω : b(x)≤G}

upuκp
h dσ

+
(∫

{x∈∂Ω : b(x)>G}
b

p∗
p∗−p dσ

) p∗−p
p∗ (∫

∂Ω

up∗uκp∗
h dσ

) p
p∗

≤ G∥uuκ
h∥p

p,∂Ω +
(∫

{x∈∂Ω : b(x)>G}
b

p∗
p∗−p dσ

) p∗−p
p∗

cp
∂Ω∥uuκ

h∥p
1,p

(3.11)
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with the embedding constants cΩ and c∂Ω . Note that

H(L) :=
(∫

{x∈Ω : a(x)>L}
a

p∗
p∗−p dx

) p∗−p
p∗

→ 0 as L → ∞,

K(G) :=
(∫

{x∈∂Ω : b(x)>G}
b

p∗
p∗−p dσ

) p∗−p
p∗

→ 0 as G → ∞.

(3.12)

Combining (3.9)–(3.12) finally yields

κp + 1
(κ + 1)p

∥uuκ
h∥p

1,p

≤
[

κp + 1
(κ + 1)p

+ M1(κp + 1)L
]

∥uuκ
h∥p

p + M1(κp + 1)H(L)cp
Ω∥uuκ

h∥p
1,p

+ M2G∥uuκ
h∥p

p,∂Ω + M2K(G)cp
∂Ω∥uuκ

h∥p
1,p + M3κ.

(3.13)

Now we choose L = L(κ, u) > 0 and G = G(κ, u) > 0 such that

M1(κp + 1)H(L)cp
Ω = κp + 1

4(κ + 1)p
, M2K(G)cp

∂Ω = κp + 1
4(κ + 1)p

.

Then, (3.13) becomes

κp + 1
2(κ + 1)p

∥uuκ
h∥p

1,p

≤
[

κp + 1
(κ + 1)p

+ M1(κp + 1)L(κ, u)
]

∥uuκ
h∥p

p + M2G(κ, u)∥uuκ
h∥p

p,∂Ω + M3κ,

(3.14)

where L(κ, u) and G(κ, u) depend on κ and on the solution u.
Case I.1: u ∈ Lr(Ω) for any finite r

We can use Proposition 2.1 to estimate the remaining boundary term in form of

∥uuκ
h∥p

p,∂Ω ≤ ε2∥uuκ
h∥p

1,p + c̃1ε−c̃2
2 ∥uuκ

h∥p
p. (3.15)

Choosing ε2 = 1
M2G(κ,u)

κp+1
4(κ+1)p and applying (3.15) to (3.14) gives

κp + 1
4(κ + 1)p

∥uuκ
h∥p

1,p

≤
[

κp + 1
(κ + 1)p

+ M1(κp + 1)L(κ, u) + M2G(κ, u)c̃1ε−c̃2
2

]
∥uuκ

h∥p
p + M3κ.

(3.16)

Inequality (3.16) can be rewritten as

∥uuκ
h∥p

1,p ≤ M4(κ, u)
[
∥uuκ

h∥p
p + 1

]
(3.17)

with a constant M4(κ, u) depending on κ and on the function u. We may apply the Sobolev embedding
theorem on the left-hand side of (3.17) which leads to

∥uuκ
h∥p∗ ≤ cΩ∥uuκ

h∥1,p ≤ M5(κ, u)
[
∥uuκ

h∥p
p + 1

] 1
p . (3.18)

Now we can start with the typical bootstrap arguments. We choose κ1 such that (κ1 +1)p = p∗. Then (3.18)
becomes

∥uuκ1
h ∥p∗ ≤ M5(κ1, u)

[
∥uuκ1

h ∥p
p + 1

] 1
p ≤ M6(κ1, u)

[
∥uκ1+1∥p

p + 1
] 1

p

= M6(κ1, u)
[
∥u∥p∗

p∗ + 1
] 1

p
< ∞,

(3.19)
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since uh(x) = min(u(x), h(x)) ≤ u(x) for a. a. x ∈ Ω . Now we may apply Fatou’s Lemma as h → ∞ in
(3.19). This gives

∥u∥(κ1+1)p∗ = ∥uκ1+1∥
1

κ1+1
p∗ ≤ M7(κ1, u)

[
∥u∥p∗

p∗ + 1
] 1

(κ1+1)p
< ∞. (3.20)

Hence, u ∈ L(κ1+1)p∗(Ω). Repeating the steps from (3.18)–(3.20) for each κ, we choose a sequence such that

κ2 : (κ2 + 1)p = (κ1 + 1)p∗,

κ3 : (κ3 + 1)p = (κ2 + 1)p∗,

...
... .

This shows that
∥u∥(κ+1)p∗ ≤ M8(κ, u) (3.21)

for any finite number κ, where M8(κ, u) is a positive constant depending both on κ and on the solution u.
Thus, u ∈ Lr(Ω) for any r ∈ (1, ∞). This proves Case I.1.

Case I.2: u ∈ Lr(∂Ω) for any finite r

Let us repeat inequality (3.14) which says

κp + 1
2(κ + 1)p

∥uuκ
h∥p

1,p

≤
[

κp + 1
(κ + 1)p

+ M9(κp + 1)L(κ, u)
]

∥uuκ
h∥p

p + M10G(κ, u)∥uuκ
h∥p

p,∂Ω + M11κ.

(3.22)

Taking into account (3.21), we can write (3.22) in the form

∥uuκ
h∥p

1,p ≤ M12(κ, u)
[
∥uuκ

h∥p
p,∂Ω + 1

]
. (3.23)

Now we may apply the Sobolev embedding theorem for the boundary on the left-hand side of (3.23). This
gives

∥uuκ
h∥p∗,∂Ω ≤ c∂Ω∥uuκ

h∥1,p ≤ M13(κ, u)
[
∥uuκ

h∥p
p,∂Ω + 1

] 1
p

. (3.24)

As before we proceed with a bootstrap argument and choose κ1 in (3.24) such that (κ1 + 1)p = p∗. This
yields

∥uuκ1
h ∥p∗,∂Ω ≤ M13(κ1, u)

[
∥uuκ1

h ∥p
p,∂Ω + 1

] 1
p ≤ M14(κ1, u)

[
∥uκ1+1∥p

p,∂Ω + 1
] 1

p

≤ M14(κ1, u)
[
∥u∥p∗

p∗,∂Ω + 1
] 1

p
< ∞.

(3.25)

Applying again Fatou’s Lemma we obtain from (3.25)

∥u∥(κ1+1)p∗,∂Ω = ∥uκ1+1∥
1

κ1+1
p∗,∂Ω ≤ M15(κ1, u)

[
∥u∥p∗

p∗,∂Ω + 1
] 1

(κ1+1)p
< ∞. (3.26)

Therefore, u ∈ L(κ1+1)p∗(∂Ω). For each κ we repeat the steps from (3.24)–(3.26) and choose a sequence such
that

κ2 : (κ2 + 1)p = (κ1 + 1)p∗,

κ3 : (κ3 + 1)p = (κ2 + 1)p∗,

...
... .

We obtain
∥u∥(κ+1)p∗,∂Ω ≤ M16(κ, u) (3.27)
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for any finite number κ, where M16(κ, u) is a positive constant depending on κ and on the solution u. Thus,
u ∈ Lr(∂Ω) for any r ∈ (1, ∞), and therefore u ∈ Lr(Ω) for any finite r ∈ (1, ∞). This completes the proof
of Part I.

Part II: u ∈ L∞(Ω)
Let us recall inequality (3.9) which says

κp + 1
(κ + 1)p

∥uuκ
h∥p

1,p

≤ κp + 1
(κ + 1)p

∥uuκ
h∥p

p + M17(κp + 1)
∫
Ω

up∗
uκp

h dx + M18

∫
∂Ω

up∗uκp
h dσ + M19κ.

(3.28)

Let us fix numbers q̃1 ∈ (p, p∗) and q̃2 ∈ (p, p∗). Then, by applying Hölder’s inequality and the results of
Part I, see (3.21) and (3.27), we derive for the several terms on the right-hand side of (3.28)

∥uuκ
h∥p

p ≤ |Ω |
q̃1−p

q̃1

(∫
Ω

(uuκ
h)q̃1dx

) p
q̃1

≤ M20∥uuκ
h∥p

q̃1 ,∫
Ω

up∗
uκp

h dx =
∫
Ω

up∗−p(uuκ
h)pdx

≤
(∫

Ω

u
p∗−p
q̃1−p q̃1dx

) q̃1−p
q̃1
(∫

Ω

(uuκ
h)q̃1

) p
q̃1

≤ M21∥uuκ
h∥p

q̃1 ,∫
∂Ω

up∗uκp
h dσ =

∫
∂Ω

up∗−p(uuκ
h)pdσ

≤
(∫

∂Ω

u
p∗−p
q̃2−p q̃2dσ

) q̃2−p
q̃2
(∫

∂Ω

(uuκ
h)q̃2dσ

) p
q̃2

≤ M22∥uuκ
h∥p

q̃2,∂Ω .

(3.29)

Note that M21, M22 are finite because of Part I. Moreover, we see from the calculations above that

M21 = M21

(
∥u∥ p∗−p

q̃1−p q̃1

)
and M22 = M22

(
∥u∥ p∗−p

q̃2−p q̃2

)
. (3.30)

Using (3.29) to (3.28) leads to

κp + 1
(κ + 1)p

∥uuκ
h∥p

1,p ≤ M23
κp + 1

(κ + 1)p
∥uuκ

h∥p
q̃1 + M24∥uuκ

h∥p
q̃2,∂Ω + M25κ. (3.31)

Case II.1: u ∈ L∞(Ω)
As before, we can estimate the boundary term via Proposition 2.1 and then use Hölder’s inequality as

seen in the first line of (3.29). This gives

∥uuκ
h∥p

q̃2,∂Ω ≤ ε3∥uuκ
h∥p

1,p + c̃1ε−c̃2
3 ∥uuκ

h∥p
p

≤ ε3∥uuκ
h∥p

1,p + c̃1ε−c̃2
3 M20∥uuκ

h∥p
q̃1 .

(3.32)

Now we choose ε3 = κp+1
2M24(κ+1)p and apply (3.32) in (3.31) to obtain

κp + 1
2(κ + 1)p

∥uuκ
h∥p

1,p ≤
(

M23(κp + 1) + c̃1ε−c̃2
3 M20M24

)
∥uuκ

h∥p
q̃1 + M25κ. (3.33)

Inequality (3.33) can be rewritten in the form

∥uuκ
h∥p

1,p ≤ M26 ((κ + 1)p)M27
[
∥uuκ

h∥p
q̃1 + 1

]
. (3.34)
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In order so see this, note that

2(κ + 1)p

κp + 1

(
M23(κp + 1) + c̃1ε−c̃2

3 M20M24

)
= 2(κ + 1)p

(
M23 + c̃1

(
2M24(κ + 1)p

κp + 1

)c̃2 1
κp + 1M20M24

)
≤ M26 ((κ + 1)p)M27 .

Now we may apply the Sobolev embedding on the left-hand side of (3.34) and the fact that u ∈ Lr(Ω) for
any finite r ∈ (1, ∞) to get

∥uuκ
h∥p∗ ≤ cΩ∥uuκ

h∥1,p ≤ M27
(
(κ + 1)M28

) [
∥uuκ

h∥p
q̃1 + 1

] 1
p

≤ M29
(
(κ + 1)M28

) [
∥uκ+1∥p

q̃1 + 1
] 1

p < ∞.
(3.35)

Applying Fatou’s Lemma in (3.35) implies that

∥u∥(κ+1)p∗ = ∥uκ+1∥
1

κ+1
p∗ ≤ M

1
κ+1

29
(
(κ + 1)M28

) 1
κ+1

[
∥uκ+1∥p

q̃1 + 1
] 1

(κ+1)p . (3.36)

Observe that (
(κ + 1)M28

) 1√
κ+1 ≥ 1 and lim

κ→∞

(
(κ + 1)M28

) 1√
κ+1 = 1.

Hence, we find a constant M30 > 1 such that

(
(κ + 1)M28

) 1
κ+1 ≤ M

1√
κ+1

30 . (3.37)

From (3.36) and (3.37) we derive

∥u∥(κ+1)p∗ ≤ M
1

κ+1
29 M

1√
κ+1

30
[
∥uκ+1∥p

q̃1 + 1
] 1

(κ+1)p . (3.38)

Now we are ready to prove the uniform boundedness with respect to κ. To this end, suppose there is a
sequence κn → ∞ such that

∥uκn+1∥p
q̃1 ≤ 1,

which is equivalent to
∥u∥(κn+1)q̃1 ≤ 1,

then Proposition 2.2 implies that ∥u∥∞ < ∞.
In the opposite case there exists a number κ0 > 0 such that

∥uκ+1∥p
q̃1 > 1 for any κ ≥ κ0. (3.39)

Combining (3.38) and (3.39) yields

∥u∥(κ+1)p∗ ≤ M
1

κ+1
29 M

1√
κ+1

30
[
2∥uκ+1∥p

q̃1

] 1
(κ+1)p ≤ M

1
κ+1

31 M
1√

κ+1
30 ∥u∥(κ+1)q̃1

(3.40)

for any κ ≥ κ0. Applying again the bootstrap arguments we define a sequence (κn) such that

κ1 : (κ1 + 1)q̃1 = (κ0 + 1)p∗,

κ2 : (κ2 + 1)q̃1 = (κ1 + 1)p∗,

κ3 : (κ3 + 1)q̃1 = (κ2 + 1)p∗,

...
... .

(3.41)
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By induction, from (3.40) and (3.41), we obtain

∥u∥(κn+1)p∗ ≤ M
1

κn+1
31 M

1√
κn+1

30 ∥u∥(κn+1)q̃1
= M

1
κn+1

31 M
1√

κn+1
30 ∥u∥(κn−1+1)p∗

for any n ∈ N, where the sequence (κn) is chosen in such a way that (κn + 1) = (κ0 + 1)
(

p∗

q̃1

)n

. Following
this we see that

∥u∥(κn+1)p∗ ≤ M

∑n

i=1
1

κi+1
31 M

∑n

i=1
1√

κi+1
30 ∥u∥(κ0+1)p∗

with (κn + 1)p∗ → ∞ as n → ∞. Since 1
κi+1 = 1

κ0+1

(
q̃1
p∗

)i

and q̃1
p∗ < 1, there is a constant M32 > 0 such

that

∥u∥(κn+1)p∗ ≤ M32∥u∥(k0+1)p∗ < ∞,

where the finiteness of the right-hand side follows from Part I. Now we may apply Proposition 2.2 to
conclude that u ∈ L∞(Ω), that is, there exists M > 0, which depends on the given data and on u, such that
∥u∥∞ ≤ M .

Case II.2: u ∈ L∞(∂Ω)
This case follows directly from Case II.1 and Proposition 2.4.
Combining Case II.1 and II.2 shows that u ∈ L∞(Ω). □

Remark 3.2. It is clear that hypothesis (H1) is not needed in the proof of Theorem 3.1, but it is necessary
to have a well-defined definition of a weak solution.

Remark 3.3. Since problem (1.1) involves functions that can exhibit a critical growth, one cannot expect
to find a constant M which depends in an explicit way on natural norms such as ∥u∥p∗ or ∥u∥p∗,∂Ω . But, if
one searches for a dependence on norms that are greater than the critical ones, then a possible dependence
is given on the norms ∥u∥ p∗−p

q̃1−p q̃1
as well as ∥u∥ p∗−p

q̃2−p q̃2,∂Ω
, where q̃1 ∈ (p, p∗) and q̃2 ∈ (p, p∗), as seen in the

proof of Theorem 3.1, see (3.30).

Based on the results of Theorem 3.1, we obtain regularity results for solutions of type (1.1). For
simplification we drop the s-dependence of the operator. To this end, let ϑ ∈ C1(0, ∞) be a function
such that

0 < a1 ≤ tϑ′(t)
ϑ(t) ≤ a2 and a3tp−1 ≤ ϑ(t) ≤ a4

(
1 + tp−1) (3.42)

for all t > 0, with some constants ai > 0, i ∈ {1, 2, 3, 4} and for 1 < p < ∞. The hypotheses on
A : Ω × RN → RN read as follows.

H(A): A(x, ξ) = A0 (x, |ξ|) ξ with A0 ∈ C(Ω × R+) for all ξ ∈ RN , where R+ = [0, +∞) and with
A0(x, t) > 0 for all x ∈ Ω and for all t > 0. Moreover,

(i) A0 ∈ C1(Ω × (0, ∞)), t → tA0(x, t) is strictly increasing in (0, ∞), limt→0+ tA0(x, t) = 0 for
all x ∈ Ω and

lim
t→0+

tA′
0(x, t)

A0(x, t) = c > −1 for all x ∈ Ω ;

(ii) |∇ξA(x, ξ)| ≤ a5
ϑ(|ξ|)

|ξ| for all x ∈ Ω , for all ξ ∈ RN \ {0} and for some a5 > 0;

(iii) ∇ξA(x, ξ)y · y ≥ ϑ(|ξ|)
|ξ| |y|2 for all x ∈ Ω , for all ξ ∈ RN \ {0} and for all y ∈ RN .
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Remark 3.4. We chose the special structure in H(A) to apply the nonlinear regularity theory, which is
mainly based on the results of Lieberman [11] and Pucci–Serrin [15]. Closely related to this subject is also
the work by Motreanu–Motreanu–Papageorgiou [13]. If we set

G0(x, t) =
∫ t

0
A0(x, s)sds,

then G0 ∈ C1(Ω × R+) and the function G0(x, ·) is increasing and strictly convex for all x ∈ Ω . We set
G(x, ξ) = G0(x, |ξ|) for all (x, ξ) ∈ Ω × RN and obtain that G ∈ C1(Ω × RN ) and that the function
ξ → G(x, ξ) is convex. Moreover, we easily derive that

∇ξG(x, ξ) = (G0)′
t(x, |ξ|) ξ

|ξ|
= A0(x, |ξ|)ξ = A(x, ξ)

for all ξ ∈ RN \ {0} and ∇ξG(x, 0) = 0. So, G(x, ·) is the primitive of A(x, ·). This fact, the convexity of
G(x, ·) and since G(x, 0) = 0 for all x ∈ Ω imply that

G(x, ξ) ≤ A(x, ξ) · ξ for all (x, ξ) ∈ Ω × RN . (3.43)

The next lemma summarizes the main properties of A : Ω ×RN → RN . The result is an easy consequence
of (3.42) and the hypotheses H(A).

Lemma 3.5. If hypotheses H(A) are satisfied, then the following hold:
(i) A ∈ C(Ω × RN ,RN ) ∩ C1(Ω × (RN \ {0}),RN ) and the map ξ → A(x, ξ) is continuous and strictly

monotone (hence, maximal monotone) for all x ∈ Ω ;
(ii) |A(x, ξ)| ≤ a6

(
1 + |ξ|p−1

)
for all x ∈ Ω , for all ξ ∈ RN and for some a6 > 0;

(iii) A(x, ξ) · ξ ≥ a3
p−1 |ξ|p for all x ∈ Ω and for all ξ ∈ RN .

From this lemma along with (3.43) we easily deduce the following growth estimates for the primitive
G(x, ·).

Corollary 3.6. If hypotheses H(A) hold, then
a3

p(p − 1) |ξ|p ≤ G(x, ξ) ≤ a7 (1 + |ξ|p)

for all x ∈ Ω , for all ξ ∈ RN and for some a7 > 0.

Let A : W 1,p(Ω) → W 1,p(Ω)∗ be the nonlinear map defined by

⟨A(u), φ⟩ =
∫
Ω

A(x, ∇u) · ∇φdx for all u, φ ∈ W 1,p(Ω). (3.44)

The next proposition summarizes the main properties of this operator, see Gasiński–Papageorgiou [7].

Proposition 3.7. Let the hypotheses H(A) be satisfied and let A : W 1,p(Ω) → W 1,p(Ω)∗ be the map defined
in (3.44). Then, A is bounded, continuous, monotone (hence maximal monotone) and of type (S+).

Let us state some operators which fit in our setting and which are of much interest.

Example 3.8. For simplicity, we drop the x-dependence of the operator A. The following maps satisfy
hypotheses H(A):
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(i) Let A(ξ) = |ξ|p−2
ξ with 1 < p < ∞. This map corresponds to the p-Laplace differential operator

defined by
∆pu = div

(
|∇u|p−2∇u

)
for all u ∈ W 1,p(Ω).

The potential is G(ξ) = 1
p |ξ|p for all ξ ∈ RN .

(ii) The function A(ξ) = |ξ|p−2
ξ + µ|ξ|q−2

ξ with 1 < q < p < ∞ and µ > 0 compares with the (p, q)-
differential operator defined by ∆pu + µ∆qu for all u ∈ W 1,p(Ω). The potential is G(ξ) = 1

p |ξ|p + µ
q |ξ|q

for all ξ ∈ RN .

(iii) If A(ξ) =
(

1 + |ξ|2
) p−2

2
ξ with 1 < p < ∞, then this map represents the generalized p-mean curvature

differential operator defined by

div
[
(1 + |∇u|2)

p−2
2 ∇u

]
for all u ∈ W 1,p(Ω).

The potential is G(ξ) = 1
p

[
(1 + |ξ|2)

p
2 − 1

]
for all ξ ∈ RN .

Let us write hypotheses (H) without the structure conditions on A.

H(B, C): The functions B : Ω × R × RN → R and C : ∂Ω × R → R are Carathéodory functions satisfying
the following structure conditions:

|B(x, s, ξ)| ≤ b1|ξ|p
q1−1

q1 + b2|s|q1−1 + b3, for a.a. x ∈ Ω ,

|C(x, s)| ≤ c1|s|q2−1 + c2, for a.a. x ∈ ∂Ω ,

for all s ∈ R, for all ξ ∈ RN , with positive constants bj , ck (j ∈ {1, 2, 3}, k ∈ {1, 2}) and fixed
numbers p, q1, q2 such that

1 < p < ∞, p ≤ q1 ≤ p∗, p ≤ q2 ≤ p∗

with the critical exponents stated in (2.2) and (2.1). Moreover, C satisfies the condition

|C(x, s) − C(y, t)| ≤ L [|x − y|α + |s − t|α] , |C(x, s)| ≤ L

for all (x, s), (y, t) ∈ ∂Ω × [−M0, M0] with α ∈ (0, 1] and constants M0 > 0 and L ≥ 0.

Based on the hypotheses H(A) and H(B, C), problem (1.1) becomes

− div A(x, ∇u) = B(x, u, ∇u) in Ω ,

A(x, ∇u) · ν = C(x, u) on ∂Ω .
(3.45)

Combining Theorem 3.1 and the regularity theory of Lieberman [11] leads to the following result.

Theorem 3.9. Let Ω ⊂ RN , N > 1, be a bounded domain with a C1,α-boundary ∂Ω and let the assumptions
H(A) and H(B, C) be satisfied. Then, every weak solution u ∈ W 1,p(Ω) of problem (3.45) belongs to C1,β(Ω)
for some β ∈ (0, 1) such that β = β(a1, a2, a5, α, N) and

∥u∥C1,β(Ω) ≤ C(a1, a2, a3, a5, N, ϑ(1), M, α, b1, b2, b3)

where M is the constant that comes from the statement of Theorem 3.1.
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Proof. We will apply Theorem 1.7 of Lieberman [11] and the comment after this theorem concerning global
Hölder gradient estimates. First, we know from Theorem 3.1 that ∥u∥∞ ≤ M . The only thing we need to
do is to check that the conditions (1.10a)–(1.10d) in [11, p. 320] are satisfied. From conditions H(A)(iii), (ii)
we see that the assumptions (1.10a) and (1.10b) are satisfied. Moreover, from H(B, C) and (3.42) we obtain

|B(x, s, ξ)| ≤ b1|ξ|p
q1−1

q1 + b2|s|q1−1 + b3

≤ b1|ξ|p + b1 + b2Mq1−1 + b3

= b1|ξ|p−1|ξ| + b1 + b2Mq1−1 + b3

≤ b1

a3
ϑ(|ξ|)|ξ| + b1 + b2Mq1−1 + b3

≤ max
{

b1

a3
, b1 + b2Mq1−1 + b3

}
(ϑ(|ξ|)|ξ| + 1) .

This proves condition (1.10d). Assumption (1.10c) follows from the fact that the function A is continuous
differentiable in the space variable and independent of the s-variable. Then we may apply the mean value
theorem which shows (1.10c). The desired result follows from Lieberman [11, Theorem 1.7] with the constants
β, C as in the theorem (and their dependence on the data) and the constant M from Theorem 3.1. □
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