Existence and uniqueness of elliptic systems with double phase operators and convection terms

Greta Marinoa, Patrick Winkertb,∗

a Technische Universität Chemnitz, Fakultät für Mathematik, Reichenhainer Straße 41, 09126 Chemnitz, Germany
b Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 156, 10623 Berlin, Germany

Article Info

Article history:
Received 13 April 2020
Available online 21 July 2020
Submitted by T. Yang

Keywords:
Double phase problems
Convection term
Pseudomonotone operators
Existence results
Uniqueness
Elliptic systems

ABSTRACT

In this paper we study quasilinear elliptic systems driven by so-called double phase operators and nonlinear right-hand sides depending on the gradients of the solutions. Based on the surjectivity result for pseudomonotone operators we prove the existence of at least one weak solution of such systems. Furthermore, under some additional conditions on the data, the uniqueness of weak solutions is shown. © 2020 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, given a bounded domain \(\Omega \subset \mathbb{R}^N, N \geq 2, \) with a Lipschitz boundary \(\partial \Omega, \) we are concerned with the existence and uniqueness of solutions to the following elliptic system

\[
- \text{div} \left(|\nabla u|^{p_i-2} \nabla u + \mu_i(x)|\nabla u|^{q_i-2} \nabla u \right) = f_i(x, u, v, \nabla u, \nabla v) \quad \text{in } \Omega,
\]

\[
- \text{div} \left(|\nabla v|^{p_2-2} \nabla v + \mu_2(x)|\nabla v|^{q_2-2} \nabla v \right) = f_2(x, u, v, \nabla u, \nabla v) \quad \text{in } \Omega,
\]

\[
u = v = 0 \quad \text{on } \partial \Omega,
\]

where \(1 < p_i < q_i < N, \mu_i : \bar{\Omega} \to [0, \infty) \) are Lipschitz continuous and \(f_i : \Omega \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R} \) are Carathéodory functions, \(i = 1, 2, \) that satisfy suitable structure conditions, see hypotheses (H) in Section 3.

Here, the operator is the so-called double-phase operator, that is

\[
- \text{div} \left(|\nabla u|^{p-2} \nabla u + \mu(x)|\nabla u|^{q-2} \nabla u \right) \quad \text{for } u \in W^{1,\mathcal{H}}(\Omega),
\]

* Corresponding author.
E-mail addresses: greta.marino@mathematik.tu-chemnitz.de (G. Marino), winkert@math.tu-berlin.de (P. Winkert).

https://doi.org/10.1016/j.jmaa.2020.124423
0022-247X/© 2020 Elsevier Inc. All rights reserved.
where $1 < p < q < N$ and with a suitable Sobolev Musielak-Orlicz space $W^{1,H}(\Omega)$, see its definition in Section 2. Such an operator is the extension of the so-called weighted (q,p)-Laplacian when $\inf_{\Omega} \mu > 0$ and of the p-Laplace differential operator when $\mu \equiv 0$.

The novelty of this work is an existence and uniqueness result for problems of the form (1.1) by using the surjectivity result for pseudomonotone operators, see Definition 2.2 and Theorem 2.3. To the best of our knowledge, this is the first work dealing with a double phase operator and a convection term (that is, the right-hand side depends on the gradient of the solution) in the context of elliptic systems.

Zhikov [39] was the first who studied so-called double phase operators in order to describe models of strongly anisotropic materials by studying the functional

$$u \mapsto \int (|\nabla u|^p + \mu(x)|\nabla u|^q) \, dx,$$ \hfill (1.2)

where $1 < p < q < N$, see also Zhikov [40], [41] and the monograph of Zhikov-Kozlov-Oleinik [42]. Functionals of the expression (1.2) have been studied by several authors with respect to regularity results and nonstandard growth, see for example, Baroni-Colombo-Mingione [4], [5], [6], Baroni-Kuusi-Mingione [7], Cupini-Marcellini-Mascolo [16], Colombo-Mingione [14], [15], Marcellini [25], [26] and the references therein.

The motivation of this work was on the one hand the work of Gasiński-Winkert [20] who proved existence and uniqueness for the problem

$$-\text{div} \left(|\nabla u|^{p-2} \nabla u + \mu(x)|\nabla u|^{q-2} \nabla u \right) = f(x,u,\nabla u) \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega,$$ \hfill (1.3)

following the paper of Averna-Motreanu-Tornatore [1]. On the other side, we were also motivated by the paper of Motreanu-Vetro-Vetro [28] who treated elliptic systems for (p_i,q_i)-Laplace operators of the form

$$-\Delta_{p_1} u_1 - \mu_1 \Delta_{q_1} u_1 = f_1(x,u_1,u_2,\nabla u_1,\nabla u_2) \quad \text{in } \Omega,$$
$$-\Delta_{p_2} u_2 - \mu_2 \Delta_{q_2} u_2 = f_2(x,u_1,u_2,\nabla u_1,\nabla u_2) \quad \text{in } \Omega,$$
$$u_1 = u_2 = 0 \quad \text{on } \partial \Omega.$$ \hfill (1.4)

The idea in the current paper is to combine both problems (1.3) and (1.4) which gives our model problem (1.1). Such new class of problems brings lots of difficulties to be overcome like the Orlicz space in order to deal with the double phase operator, the gradient dependence of the right-hand side which implies that we cannot use variational tools and the fact that we treat this for elliptic systems. Our results extend those in Gasiński-Winkert [20] and Motreanu-Vetro-Vetro [28].

In the case of single-valued equations like (1.3) without convection we refer to the works of Colasuonno-Squassina [13], Gasiński-Papageorgiou [18], Gasiński-Winkert [19], Liu-Dai [22], Perera-Squassina [35] concerning existence and multiplicity results.

Elliptic systems with the shape as in (1.4) have been considered by a number of authors. Existence results can be found, for examples, in Boccardo-de Figueiredo [8], Carl-Motreanu [10], [11], Drábek-Stavrakakis-Zographopoulos [17], Motreanu-Vetro-Vetro [29] and the references therein.

Works which are closely related to our paper dealing with certain types of double phase problems, convection terms or elliptic systems can be found in Bahrouni-Rădulescu-Repovš [2], Bahrouni-Rădulescu-Winkert [3], Cencelj-Rădulescu-Repovš [12], Marano-Marino-Moussaoui [23], Marano-Winkert [24], Marino-Winkert [27], Motreanu-Winkert [30], Papageorgiou-Rădulescu-Repovš [31], [32], [33], Rădulescu [36], Zhang-Rădulescu [38], Zheng-Gasiński-Winkert-Bai [37] and the references therein.

The paper is organized as follows. In Section 2 we recall the definition of the Musielak-Orlicz spaces $L^H(\Omega)$ and its corresponding Sobolev spaces $W^{1,H}(\Omega)$ and we recall the surjectivity result for pseudomonotone
operators. In Section 3 we present the full assumptions on the data of problem (1.1), give the definition of the weak solution and state and prove our main existence result, see Theorem 3.1. In the last part, namely Section 4, we state some conditions on f_i, $i = 1, 2$, in order to prove the uniqueness of weak solutions of (1.1), see Theorem 4.1.

2. Preliminaries

For every $1 \leq r < \infty$ we consider the usual Lebesgue spaces $L^r(\Omega)$ and $L^r(\Omega; \mathbb{R}^N)$ equipped with the norm $\| \cdot \|_r$. When $1 < r < \infty$ we denote by $W^{1,r}(\Omega)$ and $W^{1,r}_0(\Omega)$ the corresponding Sobolev spaces equipped with the norms $\| \cdot \|_{1,r}$ and $\| \cdot \|_{1,r,0}$, respectively. By r', we denote the conjugate of $r \in (1, \infty)$, that is, $\frac{1}{r} + \frac{1}{r'} = 1$.

For $i = 1, 2$ we define functions $H_i : \Omega \times [0, \infty) \to [0, \infty)$ by

$$H_i(x, t) = t^{p_i} + \mu_i(x)t^{q_i},$$

where $1 < p_i < q_i < N$ and

$$q_i \frac{1}{p_i} < 1 + \frac{1}{N}, \quad \mu_i : \Omega \to [0, \infty)$$

is Lipschitz continuous. (2.1)

Remark 2.1. From the condition above we easily see that

$$q_i < p_i^*, \quad i = 1, 2,$$

where p_i^* is the critical Sobolev exponent of p_i given by

$$p_i^* := \frac{Np_i}{N-p_i}.$$

Indeed, for fixed $i \in \{1, 2\}$, we have to show that $q_i < \frac{Np_i}{N-p_i}$, that is $Nq_i - p_iq_i < Np_i$. From condition (2.1) we have $Nq_i - p_i < Np_i$. Moreover, since $q_i > 1$, we have

$$Nq_i - p_iq_i < Nq_i - p_i < Np_i,$$

which shows the assertion.

Let $\rho_{H_i}(u) := \int_{\Omega} H_i(x, |u|)dx$. Then the Musielak-Orlicz space $L^{H_i}(\Omega)$ is given by

$$L^{H_i}(\Omega) = \left\{ u : \Omega \to \mathbb{R} \text{ is measurable and } \rho_{H_i}(u) < +\infty \right\}$$

equipped with the Luxemburg norm

$$\|u\|_{H_i} := \inf \left\{ \tau > 0 : \rho_{H_i} \left(\frac{u}{\tau} \right) \leq 1 \right\}.$$

Then $L^{H_i}(\Omega)$ becomes uniformly convex, and so a reflexive Banach space. Moreover we define the space

$$L_{H_i}^0(\Omega) = \left\{ u : \Omega \to \mathbb{R} \text{ is measurable and } \int_{\Omega} \mu_i(x)|u|^{q_i} \, dx < +\infty \right\}$$

endowed with the seminorm
\[
\|u\|_{q_i, \mu_i} := \left(\int_{\Omega} \mu_i(x)|u|^{q_i} dx \right)^{\frac{1}{q_i}}.
\]

From Colasuonno-Squassina [13, Proposition 2.15] we have the following continuous embeddings
\[
L^{p_i}(\Omega) \hookrightarrow L^{H_i}(\Omega) \hookrightarrow L^{p_i}(\Omega) \cap L^{p_i*}(\Omega).
\]

For \(u \neq 0 \) we have \(\rho_{H_i} \left(\frac{u}{\|u\|_{H_i}} \right) = 1 \), so it is easy to see that
\[
\min \{ \|u\|_{H_i}^{p_i}, \|u\|_{H_i}^{q_i} \} \leq \|u\|_{H_i}^{p_i} + \|u\|_{H_i}^{q_i} \leq \max \{ \|u\|_{H_i}^{p_i}, \|u\|_{H_i}^{q_i} \}
\]
for every \(u \in L^{H_i}(\Omega) \). Then we can introduce the corresponding Sobolev space \(W^{1, H_i}(\Omega) \) defined by
\[
W^{1, H_i}(\Omega) := \{ u \in L^{H_i}(\Omega) : \nabla u \in L^{H_i}(\Omega) \}
\]
with the norm
\[
\|u\|_{1, H_i} := \|\nabla u\|_{H_i} + \|u\|_{H_i},
\]
where \(\|\nabla u\|_{H_i} = \|\nabla u\|_{H_i} \).

Moreover, we write \(W^{1, H_i}(\Omega) := \overline{C_0^\infty(\Omega)}^{\|\cdot\|_{H_i}} \) being the completion of \(C_0^\infty(\Omega) \) in \(W^{1, H_i}(\Omega) \). Taking (2.1) into account we can refer to Colasuonno-Squassina [13, Proposition 2.18] in order to consider an equivalent norm on \(W^{1, H_i}(\Omega) \) given by
\[
\|u\|_{1, H_i, 0} = \|\nabla u\|_{H_i}.
\]

Note that \(W^{1, H_i}(\Omega) \) as well as \(W^{1, H_i}_0(\Omega) \) are uniformly convex, and so reflexive Banach spaces.

Since \(1 < p_i < N \), we know that the embedding
\[
W^{1, H_i}_0(\Omega) \hookrightarrow L^{r_i}(\Omega)
\]
is compact whenever \(r_i < p_i^* \), see Colasuonno-Squassina [13, Proposition 2.15].

From equation (2.2) we directly obtain
\[
\min \left\{ \|u\|_{1, H_i, 0}^{p_i}, \|u\|_{1, H_i, 0}^{q_i} \right\} \leq \|\nabla u\|_{P_i}^{p_i} + \|\nabla u\|_{q_i, \mu_i}^{q_i} \leq \max \left\{ \|u\|_{1, H_i, 0}^{p_i}, \|u\|_{1, H_i, 0}^{q_i} \right\}
\]
for every \(u \in W^{1, H_i}_0(\Omega) \).

For \(1 < r < \infty \) we consider now the eigenvalue problem for the \(r \)-Laplacian with homogeneous Dirichlet boundary condition given by
\[
-\Delta_r u = \lambda |u|^{r-2} u \quad \text{in } \Omega,
\]
\[
u = 0 \quad \text{on } \partial \Omega.
\]

Let us denote by \(\lambda_{1, r} \) the first eigenvalue of (2.5). It is well known that \(\lambda_{1, r} \) is positive, simple, and isolated, see Lê [21]. Moreover, we have the following variational characterization
\[
\lambda_{1,r} = \inf_{u \in W^1_0(\Omega)} \left\{ \int_{\Omega} |\nabla u|^r \, dx : \int_{\Omega} |u|^r \, dx = 1 \right\}.
\] (2.6)

We now recall some definitions that we will use in the sequel.

Definition 2.2. Let \(X \) be a reflexive Banach space, \(X^* \) its dual space and denote by \(\langle \cdot, \cdot \rangle \) its duality pairing. Let \(A : X \to X^* \), then \(A \) is called

(a) to satisfy the (S\(_+\))-property if \(u_n \rightharpoonup u \) in \(X \) and \(\limsup_{n \to \infty} \langle Au_n, u_n - u \rangle \leq 0 \) imply \(u_n \to u \) in \(X \);

(b) pseudomonotone if \(u_n \rightharpoonup u \) in \(X \) and \(\limsup_{n \to \infty} \langle Au_n, u_n - u \rangle \leq 0 \) imply \(Au_n \rightharpoonup Au \) and \(\langle Au_n, u_n \rangle \to \langle Au, u \rangle \);

(c) coercive if

\[
\lim_{\|u\|_X \to \infty} \frac{\langle Au, u \rangle}{\|u\|_X} = \infty.
\] (2.7)

Our existence result is based on the following surjectivity result for pseudomonotone operators, see, e.g., Carl-Le-Motreanu [9, Theorem 2.99] or Papageorgiou-Winkert [34, Theorem 6.1.57].

Theorem 2.3. Let \(X \) be a real, reflexive Banach space, let \(A : X \to X^* \) be a pseudomonotone, bounded, and coercive operator, and \(b \in X^* \). Then, a solution of the equation \(Au = b \) exists.

We consider the space \(\mathcal{W} := W^{1,H_1}_0(\Omega) \times W^{1,H_2}_0(\Omega) \) endowed with the norm

\[
\|(u, v)\|_{\mathcal{W}} := \|u\|_{1,H_1,0} + \|v\|_{1,H_2,0},
\]

for every \((u, v) \in W^{1,H_1}_0(\Omega) \times W^{1,H_2}_0(\Omega)\).

Then we consider the operator \(A : W^{1,H_1}_0(\Omega) \times W^{1,H_2}_0(\Omega) \to (W^{1,H_1}_0(\Omega))^* \times (W^{1,H_2}_0(\Omega))^* \) defined by

\[
\langle A(u, v), (\varphi, \psi) \rangle_{H_1 \times H_2} := \int_{\Omega} (|\nabla u|^{p_1-2} \nabla u + \mu_1(x)|\nabla u|^{q_1-2} \nabla u) \cdot \nabla \varphi \, dx
\]

\[
+ \int_{\Omega} (|\nabla v|^{p_2-2} \nabla v + \mu_2(x)|\nabla v|^{q_2-2} \nabla v) \cdot \nabla \psi \, dx,
\] (2.8)

where \(\langle \cdot, \cdot \rangle_{H_1 \times H_2} \) is the duality pairing between \(W^{1,H_1}_0(\Omega) \times W^{1,H_2}_0(\Omega) \) and its dual space \((W^{1,H_1}_0(\Omega))^* \times (W^{1,H_2}_0(\Omega))^* \). The next result summarizes the properties of the operator \(A \).

Lemma 2.4. Let \(A : W^{1,H_1}_0(\Omega) \times W^{1,H_2}_0(\Omega) \to (W^{1,H_1}_0(\Omega))^* \times (W^{1,H_2}_0(\Omega))^* \) be the operator defined by (2.8). Then, \(A \) is bounded, continuous, monotone (hence maximal monotone), and of type (S\(_+\)).

Proof. The proof is similar to the one in Liu-Dai [22, Proposition 3.1]. \(\square \)

3. Main result

We assume the following hypotheses on the nonlinearities \(f_1, f_2 \).

(H) \(f_1, f_2 : \Omega \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R} \) are Carathéodory functions such that
(i) There exist \(\alpha_i \in L^{\frac{r_i}{r_i - 1}}(\Omega) \) \((i = 1, 2) \) such that

\[
|f_1(x, s, t, \xi, \zeta)| \leq A_1|s|^{a_1} + A_2|t|^{a_2} + A_3|s|^{a_3}|t|^{a_4} + A_4\xi^{a_5} + A_5|\zeta|^{a_6} + A_6|\zeta|^{a_7}|\zeta|^{a_8} + |\alpha_1(x)|,
\]

\[
|f_2(x, s, t, \xi, \zeta)| \leq B_1|s|^{b_1} + B_2|t|^{b_2} + B_3|s|^{b_3}|t|^{b_4} + B_4|\xi|^{b_5} + B_5|\zeta|^{b_6} + B_6|\zeta|^{b_7}|\zeta|^{b_8} + |\alpha_2(x)|,
\]

for a.a. \(x \in \Omega \), for all \(s, t \in \mathbb{R} \) and for all \(\xi, \zeta \in \mathbb{R}^N \), where \(A_j, B_j, j = 1, \ldots, 6 \), are nonnegative constants and with \(1 < r_i < p_i \), \(i = 1, 2 \). Moreover, the exponents \(a_\ell, b_\ell, \ell = 1, \ldots, 8 \), are nonnegative and satisfy the following conditions

\[
\begin{align*}
\text{(E1)} \quad & a_1 \leq r_1 - 1, & \text{(E2)} \quad & a_2 \leq \frac{r_1 - 1}{r_1}, \\
\text{(E3)} \quad & \frac{a_3}{r_1} + \frac{a_4}{r_2} \leq \frac{r_1 - 1}{r_1}, & \text{(E4)} \quad & a_5 \leq \frac{r_1 - 1}{r_1}, \\
\text{(E5)} \quad & a_6 \leq \frac{r_1 - 1}{r_1}, & \text{(E6)} \quad & \frac{a_7}{p_1} + \frac{a_8}{p_2} \leq \frac{r_1 - 1}{r_1}, \\
\text{(E7)} \quad & b_1 \leq \frac{r_2 - 1}{r_2}, & \text{(E8)} \quad & b_2 \leq r_2 - 1, \\
\text{(E9)} \quad & \frac{b_3}{r_1} + \frac{b_4}{r_2} \leq \frac{r_2 - 1}{r_2}, & \text{(E10)} \quad & b_5 \leq \frac{r_2 - 1}{r_2}, \\
\text{(E11)} \quad & b_6 \leq \frac{r_2 - 1}{r_2}, & \text{(E12)} \quad & \frac{b_7}{p_1} + \frac{b_8}{p_2} \leq \frac{r_2 - 1}{r_2}.
\end{align*}
\]

(ii) There exist \(\omega \in L^1(\Omega) \) and \(\Lambda, \Gamma \geq 0 \) such that

\[
f_1(x, s, t, \xi, \zeta)s + f_2(x, s, t, \xi, \zeta)t \leq \Lambda (|\xi|^{p_1} + |\zeta|^{p_2}) + \Gamma (|s|^{p_1} + |t|^{p_2}) + \omega(x),
\]

for a.a. \(x \in \Omega \), for all \(s, t \in \mathbb{R} \) and for all \(\xi, \zeta \in \mathbb{R}^N \) and with

\[
\Lambda + \Gamma \max \left\{ \lambda_{1,p_i}^{-1}, \lambda_{1,p_2}^{-1} \right\} < 1,
\]

where \(\lambda_{1,p_i} \) is the first eigenvalue of the \(p_i \)-Laplacian, see (2.5).

We say that \((u, v) \in W_0^{1,\mathcal{H}_1}(\Omega) \times W_0^{1,\mathcal{H}_2}(\Omega)\) is a weak solution of problem (1.1) if

\[
\begin{align*}
\int_{\Omega} (|
abla u|^{p_1 - 2}\nabla u + \mu_1(x)|\nabla u|^{q_1 - 2}\nabla u) \cdot \nabla \varphi \, dx & = \int_{\Omega} f_1(x, u, v, \nabla u, \nabla v)\varphi \, dx, \\
\int_{\Omega} (|
abla v|^{p_2 - 2}\nabla v + \mu_2(x)|\nabla v|^{q_2 - 2}\nabla v) \cdot \nabla \psi \, dx & = \int_{\Omega} f_2(x, u, v, \nabla u, \nabla v)\psi \, dx,
\end{align*}
\]

is satisfied for all test functions \((\varphi, \psi) \in W_0^{1,\mathcal{H}_1}(\Omega) \times W_0^{1,\mathcal{H}_2}(\Omega)\). Taking the embedding (2.3) into account, along with the growth conditions in (H)(i), we see that the definition of a weak solution is well-defined. Indeed, if we estimate the integral concerning the function \(f_1 : \Omega \times \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N \rightarrow \mathbb{R} \) by using condition (H)(i) we obtain several mixed terms. Let us consider, for example, the third term on the right-hand side of the growth of \(f_1 \). Applying Hölder’s inequality we get
Our aims are to give a formulation of the problem (1.1) and results which are associated with it. Taking advantage of the boundedness of the sequence \(u, v \) in \(W_{0}^{1,H_{1}}(\Omega) \times W_{0}^{1,H_{2}}(\Omega) \), we can apply (H)(i) to show that \(u, v \) is pseudomonotone. Moreover, let
\[
\hat{N}_{f_{i}} : W_{0}^{1,H_{1}}(\Omega) \times W_{0}^{1,H_{2}}(\Omega) \subset L^{r_{1}}(\Omega) \times L^{r_{2}}(\Omega) \rightarrow L^{r_{1}^{*}}(\Omega) \times L^{r_{2}^{*}}(\Omega)
\]
be the Nemitskij operator associated to \(f_{i} \). Moreover, let
\[
j_{i}^{*} : L^{r_{1}^{*}}(\Omega) \times L^{r_{2}^{*}}(\Omega) \rightarrow (W_{0}^{1,H_{1}}(\Omega))^{*} \times (W_{0}^{1,H_{2}}(\Omega))^{*}
\]
be the adjoint operator for the embedding
\[
j_{i} : W_{0}^{1,H_{1}}(\Omega) \times W_{0}^{1,H_{2}}(\Omega) \rightarrow L^{r_{1}}(\Omega) \times L^{r_{2}}(\Omega).
\]
We then define
\[
N_{f_{i}} := j_{i}^{*} \circ \hat{N}_{f_{i}} : W_{0}^{1,H_{1}}(\Omega) \times W_{0}^{1,H_{2}}(\Omega) \rightarrow (W_{0}^{1,H_{1}}(\Omega))^{*} \times (W_{0}^{1,H_{2}}(\Omega))^{*},
\]
which is well-defined by hypotheses (H)(i). We set
\[
A(u,v) := A(u,v) - N_{f_{1}}(u,v) - N_{f_{2}}(u,v).
\]
(3.4)

Our aim is to apply Theorem 2.3. So, we need to show that \(A \) is bounded, pseudomonotone and coercive.

Claim 1: \(A \) is bounded.

The boundedness of \(A \) follows directly from the boundedness of \(A \) and the growth conditions on \(f_{1} \) and \(f_{2} \) stated in (H)(i).

Claim 2: \(A \) is pseudomonotone.

To this end, let \(\{ (u_{n}, v_{n}) \} \in W_{0}^{1,H_{1}}(\Omega) \times W_{0}^{1,H_{2}}(\Omega) \) be a sequence such that
\[
(u_{n}, v_{n}) \rightharpoonup (u, v) \quad \text{in} \quad W_{0}^{1,H_{1}}(\Omega) \times W_{0}^{1,H_{2}}(\Omega)
\]
(3.5)
and

\[\limsup_{n \to \infty} \langle A(u_n, v_n), (u_n - u, v_n - v) \rangle_{\mathcal{H}_1 \times \mathcal{H}_2} \leq 0. \] \hfill (3.6)

Taking the compact embedding (2.3) into account yields

\[u_n \to u \quad \text{in } L^{r_1}(\Omega) \quad \text{and} \quad v_n \to v \quad \text{in } L^{r_2}(\Omega), \] \hfill (3.7)

since \(r_1 < p_1^* \) and \(r_2 < p_2^* \), respectively. We want to show that

\[\lim_{n \to \infty} \int_{\Omega} f_1(x, u_n, v_n, \nabla u_n, \nabla v_n)(u_n - u) \, dx = 0, \]

\[\lim_{n \to \infty} \int_{\Omega} f_2(x, u_n, v_n, \nabla u_n, \nabla v_n)(v_n - v) \, dx = 0. \] \hfill (3.8)

Let us consider the first expression in (3.8). By the growth condition (H)(i) it follows

\[\int_{\Omega} f_1(x, u_n, v_n, \nabla u_n, \nabla v_n)(u_n - u) \, dx \]

\[\leq \int_{\Omega} \left(A_1 |u_n|^{a_1} + A_2 |v_n|^{a_2} + A_3 |u_n|^{a_3}|v_n|^{a_4} \right. \]

\[+ A_4 |\nabla u_n|^{a_5} + A_5 |\nabla v_n|^{a_6} + A_6 |\nabla u_n|^{a_7}|\nabla v_n|^{a_8} + |\alpha_1(x)| \left. \right) |u_n - u| \, dx. \] \hfill (3.9)

Applying Hölder’s inequality, (3.7) and conditions (E1) and (E2), respectively, we obtain

\[A_1 \int_{\Omega} |u_n|^{a_1} |u_n - u| \, dx \leq A_1 \left(\int_{\Omega} |u_n|^{a_1 r_1^*} \, dx \right)^{\frac{1}{r_1}} \|u_n - u\|_{r_1} \]

\[\leq C_1 \left(1 + \|u_n\|_{r_1}^{r_1 - 1} \right) \|u_n - u\|_{r_1} \to 0 \]

and

\[A_2 \int_{\Omega} |v_n|^{a_2} |u_n - u| \, dx \leq A_2 \left(\int_{\Omega} v_n^{a_2 r_1^*} \, dx \right)^{\frac{1}{r_1}} \|u_n - u\|_{r_1} \]

\[\leq C_2 \left(1 + \|v_n\|_{r_2}^{r_2 - 1} \right) \|u_n - u\|_{r_1} \to 0 \]

for some \(C_1, C_2 > 0 \). Moreover, Hölder’s inequality with exponents \(x_1, y_1, z_1 > 1 \) such that

\[x_1 a_3 \leq r_1, \quad y_1 a_4 \leq r_2, \quad z_1 = r_1, \quad \frac{1}{x_1} + \frac{1}{y_1} + \frac{1}{z_1} = 1 \]

gives, by hypothesis (E3),

\[A_3 \int_{\Omega} |u_n|^{a_3} |v_n|^{a_4} |u_n - u| \, dx \leq A_3 \|u_n\|_{a_3 x_1}^{a_3} \|v_n\|_{a_4 y_1}^{a_4} \|u_n - u\|_{r_1} \to 0. \]
Next we apply Hölder’s inequality with exponents r_1, r'_1 and use (E4) and (E5) to get
\[
A_4 \int_\Omega |\nabla u_n|^{a_8} |u_n - u| \, dx \leq A_4 \left(\int_\Omega |\nabla u_n|^{a_8 r'_1} \, dx \right)^{\frac{1}{r'_1}} \|u_n - u\|_{r_1} \leq C_3 \left(1 + \|\nabla u_n\|_{p_1}^{\frac{p_1}{r'_1}} \right) \|u_n - u\|_{r_1} \rightarrow 0
\]
and
\[
A_5 \int_\Omega |\nabla v_n|^{a_8} |u_n - u| \, dx \leq A_5 \left(\int_\Omega |\nabla v_n|^{a_8 r'_1} \, dx \right)^{\frac{1}{r'_1}} \|u_n - u\|_{r_1} \leq C_4 \left(1 + \|\nabla v_n\|_{p_2}^{\frac{p_2}{r'_1}} \right) \|u_n - u\|_{r_1} \rightarrow 0
\]
for some $C_3, C_4 > 0$. Furthermore, condition (E6) allows us to apply Hölder’s inequality with exponents $x_2, y_2, z_2 > 1$ such that
\[
x_2 a_7 \leq p_1, \quad y_2 a_8 \leq p_2, \quad z_2 = r_1, \quad \frac{1}{x_2} + \frac{1}{y_2} + \frac{1}{z_2} = 1
\]
in order to have
\[
A_6 \int_\Omega |\nabla u_n|^{a_7} |\nabla v_n|^{a_8} (u_n - u) \, dx \leq A_6 \|\nabla u_n\|^{a_7}_{a_7 x_2} \|\nabla v_n\|^{a_8}_{a_8 y_2} \|u_n - u\|_{r_1} \rightarrow 0,
\]
since both $\|\nabla u_n\|_{a_7 x_2}$ and $\|\nabla v_n\|_{a_8 y_2}$ are bounded. Finally, for the last term in (3.9) we have
\[
\int_\Omega |\alpha_1(x)||u_n - u| \, dx \leq \|\alpha_1\|_{r_1'} \|u_n - u\|_{r_1} \rightarrow 0.
\]
Combining all the calculations above give
\[
\lim_{n \rightarrow \infty} \int_\Omega f_1(x, u_n, v_n, \nabla u_n, \nabla v_n) (u_n - u) \, dx = 0.
\]
Applying similar arguments proves that
\[
\lim_{n \rightarrow \infty} \int_\Omega f_2(x, u_n, v_n, \nabla u_n, \nabla v_n) (v_n - v) \, dx = 0.
\]
Hence, (3.8) is fulfilled. We now take the weak formulation (3.3), replace u by u_n, v by v_n, φ by $u_n - u$ and ψ by $v_n - v$ and use (3.6) as well as (3.8) in order to have
\[
\limsup_{n \rightarrow \infty} (A(u_n, v_n), (u_n - u, v_n - v))_{\mathcal{H}_1 \times \mathcal{H}_2} = \limsup_{n \rightarrow \infty} (A(u_n, v_n), (u_n - u, v_n - v))_{\mathcal{H}_1 \times \mathcal{H}_2} \leq 0. \quad (3.10)
\]
Since A satisfies the (S_+)-property, see Lemma 2.4, we derive from (3.5) and (3.10) that
\[
(u_n, v_n) \rightarrow (u, v) \quad \text{in} \quad W^{1,\mathcal{H}_1}(\Omega) \times W^{1,\mathcal{H}_2}(\Omega).
\]
Since \mathcal{A} is continuous we have $\mathcal{A}(u_n, v_n) \to \mathcal{A}(u, v)$ in $(W^{1,H_1}_0(\Omega))^* \times (W^{1,H_2}_0(\Omega))^*$, which proves that \mathcal{A} is pseudomonotone.

Claim 3: \mathcal{A} is coercive.

First of all, taking into account the representation (2.6) and replacing r by p_1 and p_2, respectively, we have

$$
\|u\|_{p_1} \leq \lambda^{-1}_{1,p_1} \|\nabla u\|_{p_1} \quad \text{and} \quad \|v\|_{p_2} \leq \lambda^{-1}_{1,p_2} \|\nabla v\|_{p_2} \tag{3.11}
$$

for all $(u, v) \in W^{1,H_1}_0(\Omega) \times W^{1,H_2}_0(\Omega)$. Note that $W^{1,H_1}_0(\Omega) \subseteq W^{1,p_1}_0(\Omega)$ and $W^{1,H_2}_0(\Omega) \subseteq W^{1,p_2}_0(\Omega)$. Applying these facts along with (3.11), (3.1), and (2.4) leads to

$$
\langle \mathcal{A}(u, v), (u, v) \rangle_{H_1 \times H_2} = \int_{\Omega} \left(|\nabla u|^{p_1-2} \nabla u + \mu_1(x) |\nabla u|^{q_1-2} \nabla u \right) \cdot \nabla u \, dx \\
+ \int_{\Omega} \left(|\nabla v|^{p_2-2} \nabla v + \mu_2(x) |\nabla v|^{q_2-2} \nabla v \right) \cdot \nabla v \, dx \\
- \int_{\Omega} f_1(x, u, v, \nabla u, \nabla v) u \, dx - \int_{\Omega} f_2(x, u, v, \nabla u, \nabla v) v \, dx \\
\geq \|\nabla u\|_{p_1} + \|\nabla u\|_{q_1, p_1} + \|\nabla v\|_{p_2} + \|\nabla v\|_{q_2, p_2} \\
- \Lambda \left(\|\nabla u\|_{p_1} + \|\nabla v\|_{p_2} \right) - \Gamma \left(\|u\|_{p_1} + \|v\|_{p_2} \right) - \|\omega\|_1 \\
\geq \left(1 - \Lambda - \Gamma \lambda^{-1}_{1,p_1} \right) \|\nabla u\|_{p_1} + \|\nabla u\|_{q_1, p_1} \\
+ \left(1 - \Lambda - \Gamma \lambda^{-1}_{1,p_2} \right) \|\nabla v\|_{p_2} + \|\nabla v\|_{q_2, p_2} - \|\omega\|_1 \\
\geq \left(1 - \Lambda - \Gamma \max \left\{ \lambda^{-1}_{1,p_1}, \lambda^{-1}_{1,p_2} \right\} \right) \left(\min \left\{ \|u\|_{1,H_1,0}, \|u\|_{1,H_1,0} \right\} \right) \\
+ \min \left\{ \|\nabla v\|_{1,H_2,0}, \|\nabla v\|_{1,H_2,0} \right\} - \|\omega\|_{L^1(\Omega)}.
$$

Since $1 < p_i < q_i$ and condition (3.2) holds, it follows that (2.7) is satisfied, and hence \mathcal{A} is coercive.

From the Claims 1–3 we see that \mathcal{A} is bounded, pseudomonotone and coercive. Therefore, by Theorem 2.3, there exists $(u, v) \in W^{1,H_1}_0(\Omega) \times W^{1,H_2}_0(\Omega)$ such that $\mathcal{A}(u, v) = 0$. Taking into account the definition of \mathcal{A}, see equation (3.4), it follows that (u, v) is a weak solution of problem (1.1). That finishes the proof. \(\Box\)

4. A uniqueness result

Now we consider the uniqueness of solutions of (1.1). To this end, let $f: \Omega \times \mathbb{R}^2 \times (\mathbb{R}^N)^2 \to \mathbb{R}^2$ be the vector field defined by

$$
f(x, s, \xi) = (f_1(x, s, \xi), f_2(x, s, \xi))
$$

for a.a. $x \in \Omega$, for all $s \in \mathbb{R}^2$ and for all $\xi \in (\mathbb{R}^N)^2$. We suppose the following conditions on f:

(U1) There exists $c_1 \geq 0$ such that

$$(f(x, s, \xi) - f(x, t, \xi)) \cdot (s - t) \leq c_1 |s - t|^2$$

for a.a. $x \in \Omega$, for all $s, t \in \mathbb{R}^2$ and for all $\xi \in (\mathbb{R}^N)^2$.
(U2) There exist \(\rho = (\rho_1, \rho_2) \) with \(\rho_i \in L^{s_i}(\Omega) \), \(1 < s_i < p_i^* \) and \(c_2 \geq 0 \) such that \(f(x, s, \cdot) - \rho(x) \) is linear on \((\mathbb{R}^N)^2 \) for a.a. \(x \in \Omega \) and for all \(s \in \mathbb{R}^2 \) and

\[
|f(x, s, \xi) - \rho(x)| \leq c_2|\xi|
\]

for a.a. \(x \in \Omega \), for all \(s \in \mathbb{R}^2 \) and for all \(\xi \in (\mathbb{R}^N)^2 \).

Our main result in this section reads as follows.

Theorem 4.1. Let (2.1), (H), (U1), and (U2) be satisfied. If \(2 = p_i < q_i < N \) for \(i = 1, 2 \) and

\[
c_1 \lambda_{1,2}^{-1} + c_2 (2\lambda_{1,2}^{-1})^{\frac{1}{2}} < 1, \tag{4.1}
\]

then there exists a unique weak solution of problem (1.1).

Proof. Let \(u = (u_1, u_2), v = (v_1, v_2) \in W^{1,H_1}(\Omega) \times W^{1,H_2}(\Omega) \) be two weak solutions of (1.1). Considering the weak formulation for \(u \) and \(v \), choosing \(\varphi = u_1 - v_1 \) as well as \(\psi = u_2 - v_2 \) and subtracting the related equations gives

\[
\int_{\Omega} |\nabla(u_1 - v_1)|^2 \, dx + \int_{\Omega} |\nabla(u_2 - v_2)|^2 \, dx \\
+ \int_{\Omega} \mu_1(x) (|\nabla u_1|^{q_1-2}\nabla u_1 - |\nabla v_1|^{q_1-2}\nabla v_1) \cdot \nabla(u_1 - v_1) \, dx \\
+ \int_{\Omega} \mu_2(x) (|\nabla u_2|^{q_2-2}\nabla u_2 - |\nabla v_2|^{q_2-2}\nabla v_2) \cdot \nabla(u_2 - v_2) \, dx \\
= \int_{\Omega} (f(x, u, \nabla u) - f(x, v, \nabla u)) \cdot (u - v) \, dx \\
+ \int_{\Omega} (f(x, v, \nabla v) - f(x, v, \nabla v) + \rho(x)) \cdot (u - v) \, dx. \tag{4.2}
\]

By the monotonicity of \(\xi \mapsto |\xi|^{q_i-2}\xi \) we see that the third and the fourth integral on the left-hand side of (4.2) are nonnegative, that is,

\[
\int_{\Omega} |\nabla(u_1 - v_1)|^2 \, dx + \int_{\Omega} |\nabla(u_2 - v_2)|^2 \, dx \\
+ \int_{\Omega} \mu_1(x) (|\nabla u_1|^{q_1-2}\nabla u_1 - |\nabla v_1|^{q_1-2}\nabla v_1) \cdot \nabla(u_1 - v_1) \, dx \\
+ \int_{\Omega} \mu_2(x) (|\nabla u_2|^{q_2-2}\nabla u_2 - |\nabla v_2|^{q_2-2}\nabla v_2) \cdot \nabla(u_2 - v_2) \, dx \geq \int_{\Omega} |\nabla(u_1 - v_1)|^2 \, dx + \int_{\Omega} |\nabla(u_2 - v_2)|^2 \, dx \\
= \|\nabla(u_1 - v_1)\|_2^2 + \|\nabla(u_2 - v_2)\|_2^2. \tag{4.3}
\]
On the other side, by applying (U1) to the first integral on the right-hand side of (4.2) and (U2) to the second we obtain along with Hölder’s inequality
\[
\begin{align*}
\int_\Omega (f(x, u, \nabla u) - f(x, v, \nabla u)) \cdot (u - v) \, dx \\
+ \int_\Omega (f(x, v, \nabla u) - \rho(x) - f(x, v, \nabla v) + \rho(x)) \cdot (u - v) \, dx \\
\leq c_1 (\|u_1 - v_1\|_2^2 + \|u_2 - v_2\|_2^2) \\
+ \int_\Omega (f_1(x, v_1, v_2, (u_1 - v_1)\nabla (u_1 - v_1), (u_1 - v_1)\nabla (u_2 - v_2)) - \rho_1(x)) \, dx \\
+ \int_\Omega (f_2(x, v_1, v_2, (u_2 - v_2)\nabla (u_1 - v_1), (u_2 - v_2)\nabla (u_2 - v_2)) - \rho_2(x)) \, dx \\
\leq c_1\lambda_{1,2}^{-1} (\|\nabla (u_1 - v_1)\|_2^2 + \|\nabla (u_2 - v_2)\|_2^2) \\
+ c_2 \int_\Omega (|u_1 - v_1| + |u_2 - v_2|) (|\nabla (u_1 - v_2)|^2 + |\nabla (u_2 - v_2)|^2)^{\frac{1}{2}} \, dx \\
\leq \left(c_1\lambda_{1,2}^{-1} + c_2 (2\lambda_{1,2}^{-1})^{\frac{1}{2}} \right) (\|\nabla (u_1 - v_1)\|_2^2 + \|\nabla (u_2 - v_2)\|_2^2) .
\end{align*}
\]
Combining (4.2), (4.3) and (4.4) gives
\[
\begin{align*}
\|\nabla (u_1 - v_1)\|_2^2 + \|\nabla (u_2 - v_2)\|_2^2 \\
\leq \left(c_1\lambda_{1,2}^{-1} + c_2 (2\lambda_{1,2}^{-1})^{\frac{1}{2}} \right) (\|\nabla (u_1 - v_1)\|_2^2 + \|\nabla (u_2 - v_2)\|_2^2) .
\end{align*}
\]
Taking (4.1) into account, we see from (4.5) that $u_1 = v_1$ and $u_2 = v_2$ and so the solution of (1.1) is unique. □

References