In this corrigendum we correct a lemma concerning the geometric convergence of sequences of numbers which was used in [2] as Lemma 2.1. As a consequence the statement in the main result changes a bit and the corresponding proof needs some minor different arguments to be fitted.

(a) First, we replace Theorem 1.1 in [2] by the following one:

Theorem 1.1. Let the assumptions in (H) be satisfied. Then there exist positive constants $\alpha = \alpha(p, q_0, q_1)$ and $C = C(p, q_0, q_1, a_3, a_4, a_5, b_0, b_1, b_2, c_0, c_1, N, \Omega)$ such that the following assertions hold.

(i) If $u \in W^{1,p}(\Omega)$ is a weak subsolution of (1.1), then both $\text{ess sup}_\Omega u$ and $\text{ess sup}_\Gamma u$ are bounded from above by

$$C \left[1 + \int_\Omega u_+^{q_0(x)} \, dx + \int_\Gamma u_+^{q_1(x)} \, d\sigma \right]^\alpha.$$

(ii) If $u \in W^{1,p}(\Omega)$ is a weak supersolution of (1.1), then both $\text{ess inf}_\Omega u$ and $\text{ess inf}_\Gamma u$ are bounded from below by

$$-C \left[1 + \int_\Omega (-u)^{q_0(x)} \, dx + \int_\Gamma (-u)^{q_1(x)} \, d\sigma \right]^\alpha.$$

(b) Next, we replace Corollary 1.2 in [2] by the following one:

Corollary 1.2. Let the assumptions (H) be satisfied and let $u \in W^{1,p}(\Omega)$ be a weak solution of (1.1). Then $u \in L^\infty(\Omega), L^\infty(\Gamma)$ and the estimates in (i) and (ii) from Theorem 1.1 are valid.

(c) Replace reference [32] on page 868, line 5 from bottom by the new reference [1].

(d) Now, we replace Lemma 2.1 in [2] by the following one:

Lemma 2.1. Let $\{Y_n\}, n = 0, 1, 2, \ldots$, be a sequence of positive numbers, satisfying the recursion inequality

$$Y_{n+1} \leq K b^n \left(Y^{1+\delta_1}_n + Y^{1+\delta_2}_n \right), \quad n = 0, 1, 2, \ldots,$$
for some \(b > 1 \), \(K > 0 \) and \(\delta_2 \geq \delta_1 > 0 \). If
\[
Y_0 \leq \min \left(1, (2K)^{-\frac{1}{\pi_1}b^{-\frac{1}{\pi_2}}} \right)
\]
or
\[
Y_0 \leq \min \left((2K)^{-\frac{1}{\pi_1}b^{-\frac{1}{\pi_2}}}, (2K)^{-\frac{1}{\pi_2}b^{-\frac{1}{\pi_1}}-\frac{\delta_2-\delta_1}{2}} \right),
\]
then \(Y_n \leq 1 \) for some \(n \in \mathbb{N} \cup \{0\} \). Moreover,
\[
Y_n \leq \min \left(1, (2K)^{-\frac{1}{\pi_1}b^{-\frac{1}{\pi_2}}} \right), \quad \text{for all } n \geq n_0,
\]
where \(n_0 \) is the smallest \(n \in \mathbb{N} \cup \{0\} \) satisfying \(Y_n \leq 1 \). In particular, \(Y_n \to 0 \) as \(n \to \infty \).

We note that Lemma 2.1 stated in [2] would have been correct if \(K > 1 \) instead of \(K > 0 \). However, we need in our treatment such a result for arbitrary positive \(K \).

Now, at two places in the proof of Theorem 1.1, we need some minor changes.

e At the beginning of page 872 in [2] we add the following paragraph:

"Here, \((p_i) \) and \((p_i)_* \) are defined by, for all \(i = 1, \ldots, m \),
\[
(p_i)_* = \begin{cases}
\frac{N(p_i^-)}{N-(p_i)} & \text{if } (p_i^-) < N, \\
q_i + 1 & \text{if } (p_i^-) \geq N,
\end{cases}
\]
where \(q_0 = \max_{x \in \Gamma} q_0(x) \) and \(q_1 = \max_{x \in \Gamma} q_1(x) \) (see Section 2)."

f Replace the paragraph on page 876 from formula (3.23) until line 4 from bottom by the following paragraph:

\[
Y_0 = \int_{\Omega} (u - k)^{q_0}(x) \, dx + \int_{\Gamma} (u - k)^{q_1}(x) \, d\sigma
\]
\[
\leq \min \left(\left(\frac{16K}{kq_0(1-\eta)} \right)^{-\frac{1}{\pi_1}b^{-\frac{1}{\pi_2}}}, \left(\frac{16K}{kq_1(1-\eta)} \right)^{-\frac{1}{\pi_2}b^{-\frac{1}{\pi_1}}-\frac{\delta_2-\delta_1}{2}} \right). \tag{3.23}
\]

Relation (3.23) is clearly satisfied if
\[
\int_{\Omega} u_+^{q_0}(x) \, dx + \int_{\Gamma} u_+^{q_1}(x) \, d\sigma
\]
\[
\leq \min \left(\left(\frac{16K}{kq_0(1-\eta)} \right)^{-\frac{1}{\pi_1}b^{-\frac{1}{\pi_2}}}, \left(\frac{16K}{kq_1(1-\eta)} \right)^{-\frac{1}{\pi_2}b^{-\frac{1}{\pi_1}}-\frac{\delta_2-\delta_1}{2}} \right). \tag{3.24}
\]

Hence, if we choose \(k \) such that
\[
k = \left(1 + (16K) \frac{1}{q_0(1-\eta)} b q_0(1-\eta) \right) \frac{1}{(x_2-x_1) q_0(1-\eta)}
\]
\[
\times \left(1 + \int_{\Omega} u_+^{q_0}(x) \, dx + \int_{\Gamma} u_+^{q_1}(x) \, d\sigma \right)^{\frac{\delta_2}{q_0(1-\eta)}}, \tag{3.25}
\]
then (3.24) and in particular (3.23) are satisfied. Since $k_n \to 2k$ as $n \to \infty$ we obtain

$$\text{ess sup}_{\Omega} u \leq 2k \quad \text{and} \quad \text{ess sup}_{\Gamma} u \leq 2k$$

with k given in (3.25).

REFERENCES

Received for publication September 2015.

E-mail address: winkert@math.tu-berlin.de
E-mail address: rico.zacher@uni-ulm.de