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ABSTRACT
In this paper, we study weighted singular p-Laplace equations involving
a bounded weight function which can be discontinuous. Due to its dis-
continuity classical regularity results cannot be applied. Based on Nehari
manifolds we prove the existence of at least two positive bounded solutions
of such problems.
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1. Introduction

Let � ⊆ R
N , N ≥ 1, be a bounded domain with a Lipschitz boundary ∂�. In this paper, we study the

following nonlinear singular Dirichlet problem :

− div(ξ(x)|∇u|p−2∇u) = a(x)u−γ + λur−1 in � (Pλ)

u
∣∣
∂�

= 0, 0 < γ < 1, 1 < p < r < p∗, u ≥ 0, λ > 0.

In this problem the differential operator is a weighted p-Laplacian with a weight ξ ∈ L∞(�), ξ ≥ 0
and ξ is supposed to be bounded away from zero. Since ξ is discontinuous in general, we cannot use
the nonlinear global regularity theory of Lieberman [1] and the nonlinear strong maximum princi-
ple, see Pucci and Serrin [2, p.111 and 120]. The fact that these two basic tools are no longer available
leads to a different approach in the analysis of problem (Pλ) which is based on the Nehari method. On
the right-hand side of (Pλ) we have the competing effects of two different nonlinearities. One is the
singular term s → a(x)s−γ with s > 0 and the other one is a parametric (p − 1)-superlinear perturba-
tion s → λsr−1 with s ≥ 0 and p < r < p∗ with p∗ being the critical Sobolev exponent corresponding
to p defined by

p∗ =
{ Np

N−p if p < N,
+∞ if N ≤ p.

We are looking for positive solutions of problem (Pλ) and we show that problem (Pλ) has at least two
positive solutions for all λ ≥ 0.
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Singular problems with such competition phenomena were investigated by Sun et al. [3] and
Haitao [4] for semilinear equations driven by the Laplacian and by Giacomoni et al. [5], Papageor-
giou and Smyrlis [6], Papageorgiou and Winkert [7] and Perera and Zhang [8] for equations driven
by the p-Laplacian. We also refer to the works of Leonardi and Papageorgiou [9,10]. In all the men-
tioned works the weight function ξ is equal to one and so we can use the global elliptic regularity
theory and the strong maximum principle. These tools are crucial in the proofs of the works above
and are combined with variational methods and suitable truncation and comparison techniques. The
regularity theory guarantees that the solutions are in C1

0(�̄) and then the strong maximum principle,
so-called Hopf theorem, implies that these solutions are in int

(
C1

0(�̄)+
)

which is the interior of the
positive order cone of C1

0(�̄).
Without these facts the proofs of the works above are no more valid. As we already indicated, in

our setting, these results do not hold, so we need to employ a different approach.

2. Preliminaries

We denote by W1,p
0 (�) the usual Sobolev space with norm ‖ · ‖. By the Poincaré inequality we have

‖u‖ = ‖∇u‖p for all u ∈ W1,p
0 (�),

where ‖ · ‖p denotes the norm of Lp(�) and Lp (
�; RN)

, respectively. The norm of R
N is denoted by

| · | and ‘·’ stands for the inner product in R
N . By p∗ > 1 we denote the Sobolev critical exponent for

p defined by

p∗ =
{ Np

N−p if p < N,
+∞ if N ≤ p.

Let ξ ∈ L∞(�) with 0 < ess inf
�

ξ and let A : W1,p
0 (�) → W−1.p′

(�) = W1,p
0 (�)∗ with (1/p) +

(1/p′) = 1 be defined by

〈A(u), ϕ〉 =
∫

�

ξ(x)|∇u|p−2∇u · ∇ϕ dx for all u, ϕ ∈ W1,p
0 (�). (1)

The next proposition states the main properties of this map and it can be found in Gasiński and
Papageorgiou [11, Problem 2.192, p.279].

Proposition 2.1: The map A : W1,p
0 (�) → W−1,p′

(�) defined in (1) is bounded, that is, it maps
bounded sets to bounded sets, continuous, strictly monotone, hence maximal monotone and it is of type
(S)+, that is,

un
w→ u in W1,p

0 (�) and lim sup
n→∞

〈A(un), un − u〉 ≤ 0

imply un → u in W1,p
0 (�).

3. Positive solutions

We suppose the following hypotheses related to problem (Pλ) throughout this paper:

H0 : ξ , a ∈ L∞(�), 0 < ξ0 ≤ ess inf
�

ξ , a(x) > 0 for a.a. x ∈ �.

This hypothesis implies that the natural function space for the analysis of problem (Pλ) is the
Sobolev space W1,p

0 (�).
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Let ϕλ : W1,p
0 (�) → R be the energy functional for problem (Pλ) defined by

ϕλ(u) = 1
p

∫
�

ξ(x)|∇u|p dx − 1
1 − γ

∫
�

a(x)|u|1−γ dx − λ

r
‖u‖r

r .

It is clear that ϕλ is not C1. The corresponding Nehari manifold for this functional is given by

Nλ =
{

u ∈ W1,p
0 (�) :

∫
�

ξ(x)|∇u|p dx =
∫

�

a(x)|u|1−γ dx + λ‖u‖r
r , u �= 0

}
.

We decompose Nλ into three disjoint parts

N+
λ =

{
u ∈ Nλ : (p + γ − 1)

∫
�

ξ(x)|∇u|p dx − λ(r + γ − 1)‖u‖r
r > 0

}
,

N0
λ =

{
u ∈ Nλ : (p + γ − 1)

∫
�

ξ(x)|∇u|p dx = λ(r + γ − 1)‖u‖r
r

}
,

N−
λ =

{
u ∈ Nλ : (p + γ − 1)

∫
�

ξ(x)|∇u|p dx − λ(r + γ − 1)‖u‖r
r < 0

}
.

Note that Nλ is much smaller than W1,p
0 (�) and contains the nontrivial weak solutions of (Pλ). It is

possible for ϕλ|Nλ to exhibit properties which fail globally. One such property is identified in the next
proposition.

Proposition 3.1: If hypotheses H0 hold, then ϕλ|Nλ is coercive.

Proof: Let u ∈ Nλ. From the definition of the Nehari manifold we have

− 1
r

∫
�

ξ(x)|∇u|p dx + 1
r

∫
�

a(x)|u|1−γ dx = −λ

r
‖u‖r

r . (2)

From (2) and hypotheses H0 we obtain

ϕλ(u) =
[

1
p

− 1
r

] ∫
�

ξ(x)|∇u|p dx −
[

1
1 − γ

− 1
r

] ∫
�

a(x)|u|1−γ dx

≥
[

1
p

− 1
r

]
ξ0‖u‖p −

[
1

1 − γ
− 1

r

] ∫
�

a(x)|u|1−γ dx

≥ c1‖u‖p − c2‖u‖1−γ (3)

for some c1, c2 > 0, where we have used Theorem 13.17 of Hewitt and Stromberg [12, p.196], the
fact that 1 − γ < 1 < p and the Sobolev embedding theorem. From (3) it is clear that ϕλ|Nλ is
coercive. �

Let m+
λ = infN+

λ
ϕλ.

Proposition 3.2: If hypotheses H0 hold, then m+
λ < 0.
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Proof: From the definition of N+
λ , we have, for u ∈ N+

λ ,

λ‖u‖r
r <

p + γ − 1
r + γ − 1

∫
�

ξ(x)|∇u|p dx. (4)

Moreover, since u ∈ N+
λ ⊆ Nλ, it holds

− 1
1 − γ

∫
�

a(x)|u|1−γ dx = − 1
1 − γ

∫
�

ξ(x)|∇u|p dx + λ

1 − γ
‖u‖r

r . (5)

Applying (4), (5), hypotheses H0 and recalling 0 < γ < 1 < p < r, we get for u ∈ N+
λ

ϕλ(u) =
[

1
p

− 1
1 − γ

] ∫
�

ξ(x)|∇u|p dx − λ

[
1
r

− 1
1 − γ

]
‖u‖r

r

<

[−(p + γ − 1)

p(1 − γ )
+ r + γ − 1

r(1 − γ )
· p + γ − 1

r + γ − 1

] ∫
�

ξ(x)|∇u|p dx

= p + γ − 1
1 − γ

[
1
r

− 1
p

] ∫
�

ξ(x)|∇u|p dx

< 0.

Therefore, ϕλ|N+
λ

< 0 and so m+
λ < 0. �

Proposition 3.3: If hypotheses H0 hold, then there exists λ∗ > 0 such that for all λ ∈ (0, λ∗) we have
N0

λ = ∅.

Proof: We argue indirectly. So, suppose that for every λ∗ > 0 there exists λ ∈ (0, λ∗) such that N0
λ �=

∅. Hence, given λ > 0, we can find u ∈ Nλ such that

(p + γ − 1)

∫
�

ξ(x)|∇u|p dx = λ(r + γ − 1)‖u‖r
r . (6)

Moreover, since u ∈ Nλ, one has

(r + γ − 1)

∫
�

ξ(x)|∇u|p dx − (r + γ − 1)

∫
�

a(x)|u|1−γ dx

= λ(r + γ − 1)‖u‖r
r . (7)

Subtracting (6) from (7) results in

(r − p)

∫
�

ξ(x)|∇u|p dx = (r + γ − 1)

∫
�

a(x)|u|1−γ dx.

Hence, by hypotheses H0,

(r − p)ξ0‖u‖p ≤ (r + γ − 1)c3‖u‖1−γ

for some c3 > 0. This implies

‖u‖p+γ −1 ≤ c4 (8)

for some c4 > 0.
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On the other hand, from (6), hypotheses H0 and the Sobolev embedding theorem, we obtain

‖u‖p ≤ λc5‖u‖r

for some c5 > 0 and thus, [
1

λc5

](1/(r−p))

≤ ‖u‖.

We let λ → 0+ and see that ‖u‖ → ∞, contradicting (8). Therefore, we can find λ∗ > 0 such that
N0

λ = ∅ for all λ ∈ (0, λ∗). �

Proposition 3.4: If hypotheses H0 hold, then there exists λ̂∗ ∈ (0, λ∗] such that for every λ ∈ (0, λ̂∗),
there exists u∗ ∈ N+

λ such that

ϕλ(u∗) = m+
λ = inf

N+
λ

ϕλ

and u∗(x) ≥ 0 for a. a. x ∈ �.

Proof: Let {un}n≥1 ⊆ N+
λ be a minimizing sequence, that is,

ϕλ(un) ↘ m+
λ < 0 as n → ∞. (9)

Since N+
λ ⊆ Nλ, from Proposition 3.1, we infer that

{un}n≥1 ⊆ W1,p
0 (�) is bounded.

So, by passing to a suitable subsequence if necessary, we may assume that

un
w→ u∗ in W1,p

0 (�) and un → u∗ in Lr(�). (10)

From (9) and un
w→ u∗ in W1,p

0 (�) we have

ϕλ(u∗) ≤ lim inf
n→∞ ϕλ(un) < 0 = ϕλ(0).

Hence, u∗ �= 0.
We consider the fibering function ψu∗ : [0, ∞) → R defined by

ψu∗(t) = ϕλ(tu∗) for all t ≥ 0.

Moreover, let ηu∗ : (0, ∞) → R be the function defined by

ηu∗(t) = tp−r
∫

�

ξ(x)|∇u∗|p dx − t−γ −r+1
∫

�

a(x)|u∗|1−γ dx for all t > 0.

Note that as t → 0+, then ηu∗(t) → −∞, since r − p < r + γ − 1 and a(x) > 0 for a. a. x ∈ �, see
H0. Also, ηu∗(t) → 0 as t → +∞ and ηu∗(t) > 0 for

t >

⎡
⎢⎢⎣

∫
�

a(x)|u∗|1−γ dx∫
�

ξ(x)|∇u∗|p dx

⎤
⎥⎥⎦

(1/(p+γ −1))

= t̂ > 0.
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Therefore, we can find t0 > t̂ such that

ηu∗(t0) = max
t>0

ηu∗ .

This maximizer is unique and it is given by the solution of

η′
u∗(t) = 0.

Hence,

t0 =

⎡
⎢⎢⎣

(r + γ − 1)

∫
�

a(x)|u∗|1−γ dx

(r − p)

∫
�

ξ(x)|∇u∗|p dx

⎤
⎥⎥⎦

(1/(p+γ −1))

.

We see that

tu∗ ∈ Nλ if and only if ηu∗(t) = λ‖u∗‖r
r > 0.

Let λ̂∗ ∈ (0, λ∗] such that

ηu∗(t0) > λ‖u∗‖r
r for all λ ∈ (0, λ̂∗].

We can find t1 < t0 < t2 such that

ηu∗(t1) = λ‖u∗‖r
r = ηu∗(t2) and η′

u∗(t2) < 0 < η′
u∗(t1). (11)

In this proof we will only use t1, we mention the existence of t2 as above since it will be needed in the
sequel when we will minimize over N−

λ .
Note that ψu∗ ∈ C2(0, ∞). Therefore,

ψ ′
u∗(t1) = tp−1

1

∫
�

ξ(x)|∇u∗|p dx − t−γ
1

∫
�

a(x)|u∗|1−γ dx − λtr−1
1 ‖u∗‖r

r

and

ψ
′′
u∗(t1) = (p − 1)tp−2

1

∫
�

ξ(x)|∇u∗|p dx + γ t−γ −1
1

∫
�

a(x)|u∗|1−γ dx

− (r − 1)λtr−2
1 ‖u∗‖r

r . (12)

From (11) we have

tp−r
1

∫
�

ξ(x)|∇u∗|p dx − λ‖u∗‖r
r = t−γ −r+1

1

∫
�

a(x)|u∗|1−γ dx,

which implies that

tp−2
1

∫
�

ξ(x)|∇u∗|p dx − λtr−2
1 ‖u∗‖r

r = t−γ −1
1

∫
�

a(x)|u∗|1−γ dx. (13)

We will now apply (13) in (12) and obtain

ψ
′′
u∗(t1) = [p + γ − 1]tp−2

1

∫
�

ξ(x)|∇u∗|p dx − (r + γ − 1)λtr−2
1 ‖u∗‖r

r

= t−2
1

[
(p + γ − 1)tp

1

∫
�

ξ(x)|∇u∗|p dx − (r + γ − 1)λtr
1‖u∗‖r

r

]
. (14)
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But using (13) in (12) gives

ψ
′′
u∗(t1) = (p − 1)tp−2

1

∫
�

ξ(x)|∇u∗|p dx + γ t−γ −1
1

∫
�

a(x)|u∗|1−γ dx

− (r − 1)tr−2
1

[
tp−r
1

∫
�

ξ(x)|∇u∗|p dx − t−γ −r+1
1

∫
�

a(x)|u∗|1−γ dx
]

= (p − r)tp−2
1

∫
�

ξ(x)|∇u∗|p dx + (r + γ − 1)t−γ −1
1

∫
�

a(x)|u∗|1−γ dx

= tr−1
1 η′

u∗(t1) > 0, (15)

because of (11).
From (14) and (15) it follows that

(p + γ − 1)tp
1

∫
�

ξ(x)|∇u∗|p dx − (r + γ − 1)λtr
1‖u∗‖r

r > 0,

which implies

t1u∗ ∈ N+
λ , λ ∈ (0, λ̂∗]. (16)

Suppose that

lim inf
n→∞

∫
�

ξ(x)|∇un|p dx >

∫
�

ξ(x)|∇u∗| dx. (17)

Applying (10), (11) and (17) we get

lim inf
n→∞ ψ ′

un(t1) = lim inf
n→∞

[
tp−1
1

∫
�

ξ(x)|∇un|p dx − t−γ
1

∫
�

a(x)|un|1−γ dx − λtr−1
1 ‖un‖r

r

]

> tp−1
1

∫
�

ξ(x)|∇u∗|p dx − t−γ
1

∫
�

a(x)|u∗|1−γ dx − λtr−1
1 ‖u∗‖r

r

= ψ ′
u∗(t1)

= tr−1
1

[
ηu∗(t1) − λ‖u∗‖r

r
] = 0. (18)

From (18) we see that there exists n0 ∈ N such that

ψ ′
un(t1) > 0 for all n ≥ n0. (19)

Recall that un ∈ N+
λ ⊆ Nλ and ψ ′

un(t) = trηun(t). Hence

ψ ′
un(t) < 0 for all t ∈ (0, 1) and ψ ′

un(1) = 0.

Then, by (19), it follows t1 > 1.
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Since ψu∗ is decreasing on (0, t1], we have

ϕλ(t1u∗) ≤ ϕλ(u∗) < m+
λ . (20)

But recall that t1u∗ ∈ N+
λ because of (16). So, by (20), we obtain

m+
λ ≤ ϕλ(t1u∗) < m+

λ ,

a contradiction. This proves that un → u∗ in W1,p
0 (�), see Papageorgiou and Winkert [13, p.225],

and so, with regards to (9),

ϕλ(un) → ϕλ(u∗) = m+
λ < 0.

We know that un ∈ N+
λ for all n ∈ N. This implies

(p + γ − 1)

∫
�

ξ(x)|∇un|p dx > λ(r + γ − 1)‖un‖r
r for all n ∈ N.

Therefore

(p + γ − 1)

∫
�

ξ(x)|∇u∗|p dx ≥ λ(r + γ − 1)‖u∗‖r
r . (21)

On account of Proposition 3.3, since λ ∈ (0, λ̂∗], we cannot have equality in (21). Therefore u∗ ∈ N+
λ

and finally we have

m+
λ = ϕλ(u∗) and u∗ ∈ N+

λ .

Since we can always replace u∗ by |u∗|, we may assume that u∗ ≥ 0 with u∗ �= 0. �

The next lemma is inspired by Lemma 3 of Sun et al. [3]. In what follows we denote by Bε(0) the
open ε-ball in W1,p

0 (�) centered at the origin, that is,

Bε(0) =
{
u ∈ W1,p

0 (�) : ‖u‖ < ε
}

.

Lemma 3.5: If hypotheses H0 hold and u ∈ N+
λ , then there exist ε > 0 and a continuous function

ϑ : Bε(0) → R+ such that

ϑ(0) = 1 and ϑ(y)(u + y) ∈ N±
λ for all y ∈ Bε(0).

Proof: We do the proof only for N+
λ , the proof for N−

λ works in the same way. So, let L : W1,p
0 (�) ×

(0, ∞) → R be defined by

L(y, t) = tp+γ −1
∫

�

ξ(x)|∇(u + y)|p dx −
∫

�

a(x)|u + y|1−γ dx − λtr+γ −1‖u + y‖r
r .

Since u ∈ N+
λ ⊆ Nλ, one has L(0, 1) = 0. Moreover, because u ∈ N+

λ , it holds

L′
t(0, 1) = (p + γ − 1)

∫
�

ξ(x)|∇u|p dx − λ(r + γ − 1)‖u‖r
r > 0.

Then, by the implicit function theorem, see Gasiński and Papageorgiou [14, p.481], we can find ε > 0
and a continuous map ϑ : Bε(0) → R+ such that

ϑ(0) = 1 and ϑ(y)(u + y) ∈ Nλ for all y ∈ Bε(0).

Choosing ε > 0 even smaller if necessary, we can have

ϑ(0) = 1 and ϑ(y)(u + y) ∈ N+
λ for all y ∈ Bε(0). �
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Proposition 3.6: If hypotheses H0 hold, λ ∈ (0, λ̂∗] and h ∈ W1,p
0 (�), then we can find b > 0 such that

ϕλ(u∗) ≤ ϕ(u∗ + th) for all t ∈ [0, b].

Proof: We consider the function μh : [0, ∞) → R defined by

μh(t) = (p − 1)

∫
�

ξ(x)|∇u∗ + t∇h|p dx

+ γ

∫
�

a(x)|u∗ + th|1−γ dx − λ(r − 1)‖u∗‖r
r . (22)

Recall that u∗ ∈ N+
λ ⊆ Nλ, see Proposition 3.4. Thus, we have

γ

∫
�

ξ(x)|u∗|1−γ dx = γ

∫
�

ξ(x)|∇u∗|p dx − λγ ‖u∗‖r
r (23)

and

(p + γ − 1)

∫
�

ξ(x)|∇u∗|p dx − λ(r + γ − 1)‖u‖r
r > 0. (24)

Combining (22), (23) and (24) we obtain that

μh(0) > 0. (25)

The function μh is continuous. So, we can find b0 > 0 such that

μh(t) > 0 for all t ∈ (0, b0),

see (25). Lemma 3.5 implies that for every t ∈ [0, b0), we can find ϑ̂(t) > 0 such that

ϑ̂(t)(u∗ + th) ∈ N+
λ and ϑ̂(t) → 1 as t → 0+. (26)

Taking (26) into account we finally reach that

m+
λ = ϕλ(u∗) ≤ ϕλ(ϑ̂(t)(u∗ + th)) for all t ∈ [0, b0)

≤ ϕλ(u∗ + th) for all t ∈ [0, b) with b ≤ b0. �

The next proposition shows that N+
λ is a natural constraint for the functional ϕλ, see Papageorgiou

et al. [15, p.425].

Proposition 3.7: If hypotheses H0 hold and λ ∈ (0, λ̂∗), then u∗ is a weak solution of problem (Pλ).

Proof: Let h ∈ W1,p
0 (�). From Proposition 3.6 we know that

0 ≤ ϕλ(u∗ + th) − ϕλ(u∗) for all 0 < t < b.

This means

1
1 − γ

∫
�

a(x)
[|u∗ + th|1−γ − |u∗|1−γ

]
dx

≤ 1
p

∫
�

ξ(x)
(|∇(u∗ + th)|p − |∇u∗|p)

dx − λ

r
[‖u∗ + th‖r

r − ‖u∗‖r
r
]

.
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Multiplying by (1/t) and letting t → 0+ gives∫
�

a(x)(u∗)−γ h dx ≤
∫

�

ξ(x)|∇u∗|p−2∇u∗ · ∇h dx − λ

∫
�

(u∗)r−1h dx

for all h ∈ W1,p
0 (�). Hence,∫

�

ξ(x)|∇u∗|p−2∇u∗ · ∇h dx =
∫

�

a(x)(u∗)−γ h dx + λ

∫
�

(u∗)r−1h dx

for all h ∈ W1,p
0 (�). Thus, u∗ is a weak solution of (Pλ). �

Now we are ready to generate the first positive solution of problem (Pλ).

Proposition 3.8: If hypotheses H0 hold and λ ∈ (0, λ̂∗), then problem (Pλ) admits a positive solution
u∗ ∈ W1,p

0 (�) such that u ∈ L∞(�), u∗(x) > 0 for a. a. x ∈ � and ϕλ(u∗) < 0.

Proof: According to Proposition 3.4 there exists u∗ ∈ W1,p
0 (�) such that

u∗ ∈ N+
λ and m+

λ = ϕλ(u∗) < 0, u∗ ≥ 0.

From Proposition 3.7 we know that u∗ is a weak solution of problem (Pλ).
From Giacomoni et al. [5, Lemma A.6, p.142] we have that u∗ ∈ L∞(�). Furthermore, the Harnack

inequality, see Pucci and Serrin [2, p.163] implies that

u∗(x) > 0 for a. a. x ∈ �. �

Now we start looking for a second positive solution. To this end, we will use the manifold N−
λ .

Proposition 3.9: If hypotheses H0 hold, then there exists λ̂∗
0 ∈ (0, λ̂∗] such that ϕλ|N−

λ
≥ 0 for all 0 <

λ ≤ λ̂∗
0 .

Proof: Let u ∈ Nλ. From the definition of N−
λ we have

(p + γ − 1)

∫
�

ξ(x)|∇u|p dx < λ(r + γ − 1)‖u‖r
r ,

which implies

(p + γ − 1)ξ0‖∇u‖p
p < λ(r + γ − 1)‖u‖r

r .

Then, by the embedding W1,p
0 (�) ↪→ Lr(�), it follows

(p + γ − 1)ξ0c5‖u‖p
r < λ(r + γ − 1)‖u‖r

r

for some c5 > 0. Therefore [
(p + γ − 1)ξ0c5

λ(r + γ − 1)

](1/((r−p))

≤ ‖u‖r . (27)

Suppose that the result of the proposition is not true. This means that for every λ > 0 there exists
u ∈ N−

λ such that ϕλ(u) < 0, that is,

1
p

∫
�

ξ(x)|∇u|p dx − 1
1 − γ

∫
�

a(x)|u|1−γ dx − λ

r
‖u‖r

r < 0. (28)
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On the other hand, since u ∈ N−
λ ⊆ Nλ, we have∫

�

ξ(x)|∇u|p dx =
∫

�

a(x)|u|1−γ dx + λ‖u‖r
r . (29)

Using (29) in (28) yields[
1
p

− 1
1 − γ

] ∫
�

a(x)|u|1−γ dx + λ

[
1
p

− 1
r

]
‖u‖r

r < 0,

which implies

λ
r − p

pr
‖u‖r

r ≤ p + γ − 1
p(1 − γ )

∫
�

a(x)|u|1−γ dx ≤ p + γ − 1
p(1 − γ )

c6‖u‖1−γ
r

for some c6 > 0. Hence

‖u‖r ≤
[

(p + γ − 1)rc6

λ(1 − γ )(r − p)

](1/((r+γ −1))

and so

‖u‖r ≤ c7

(
1
λ

)(1/(r+γ −1))

(30)

for some c7 > 0.
Now we use (30) in (27) and obtain

c8

(
1
λ

)(1/(r−p))

≤ c7

(
1
λ

)(1/(r+γ −1))

with c8 =
[

(p + γ − 1)ξ0

r + γ − 1

](1/((r−p))

> 0.

This implies

c9 ≤ λ

p + γ − 1
(r + γ − 1)(r − p) with c9 = c8

c7
> 0.

Letting λ → 0+ leads to a contradiction. So, we can find 0 < λ̂∗
0 ≤ λ̂∗ such that ϕλ|N−

λ
≥ 0 for all

λ ∈ (0, λ̂∗
0]. �

Now we minimize ϕλ on the manifold N−
λ .

Proposition 3.10: If hypotheses H0 hold and λ ∈ (0, λ∗
0), then we can find v∗ ∈ N−

λ with v∗ ≥ 0 such
that

m−
λ = inf

N−
λ

ϕλ = ϕλ(v∗).

Proof: The proof of the proposition is the same as that of Proposition 3.4. Only now as we already
hinted in that proof, we use the point t2 > t0 for which we have

ηv∗(t2) = λ‖v∗‖r
r and η′

v∗(t2) < 0,

see (11). Then we conclude that

v∗ ∈ N−
λ , v∗ ≥ 0, m−

λ = ϕλ(v∗). �
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Applying Lemma 3.5 and reasoning as in the proofs of Propositions 3.6 and 3.7 we show that N−
λ

is a natural constraint for the energy functional ϕλ as well.

Proposition 3.11: If hypotheses H0 hold and λ ∈ (0, λ̂∗
0), then v∗ is a weak solution of problem (Pλ).

Therefore, we have a second positive solution v∗ ∈ W1,p
0 (�) ∩ L∞(�) and by Harnack’s inequality

we have v∗(x) > 0 for a. a. x ∈ �.
Finally, we can state the following multiplicity theorem for problem (Pλ).

Theorem 3.12: If hypotheses H0 hold, then there exists λ̂∗
0 > 0 such that for all λ ∈ (0, λ̂∗

0), problem
(Pλ) has at least two positive solutions

u∗, v∗ ∈ W1,p
0 (�) ∩ L∞(�), u∗(x) > 0, v∗(x) > 0 for a. a. x ∈ �

and

ϕλ(u∗) < 0 < ϕλ(v∗).

Remark 3.13: It is an interesting open problem whether the multiplicity theorem above holds if we
assume that

ξ ∈ L∞(�) and ξ(x) > 0 for a. a. x ∈ �,

but not necessarily bounded away from zero.
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